login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141575
A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
0
1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
OFFSET
1,2
COMMENTS
General Lucas-like Binet sequences
where Prime[m]starts at 1:
a(n)=((Prime[n]+gap[n]*Sqrt[Prime[m])^n+(Prime[n]-gap[n]*Sqrt[Prime[m])^n)/2.
Row sums are:
{1, 4, 51, 1160, 119205, 2694186, 583504495, 12222749556, 4868938911913,
3621654266405174, 21636046625243691}
FORMULA
gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
EXAMPLE
{1},
{2, 2},
{13, 17, 21},
{185, 245, 305, 425},
{7361, 12833, 18817, 32321, 47873},
{215171, 271051, 328691, 449251, 576851, 853171},
{12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
{532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
{40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
{7312866926183, 15217609281335, 25813998655559, 56317915837223,
101380456546055, 246072307427783, 351480840333479, 643872497781095,
837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
4951533162173037}
MATHEMATICA
gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Aug 18 2008
STATUS
approved