Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 17:34:26
%S 1,2,2,13,17,21,185,245,305,425,7361,12833,18817,32321,47873,215171,
%T 271051,328691,449251,576851,853171,12334505,21164697,31341961,
%U 55836009,86013257,164203785,212610281,532365557,659940697,793109789,1076412613
%N A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
%C General Lucas-like Binet sequences
%C where Prime[m]starts at 1:
%C a(n)=((Prime[n]+gap[n]*Sqrt[Prime[m])^n+(Prime[n]-gap[n]*Sqrt[Prime[m])^n)/2.
%C Row sums are:
%C {1, 4, 51, 1160, 119205, 2694186, 583504495, 12222749556, 4868938911913,
%C 3621654266405174, 21636046625243691}
%F gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
%e {1},
%e {2, 2},
%e {13, 17, 21},
%e {185, 245, 305, 425},
%e {7361, 12833, 18817, 32321, 47873},
%e {215171, 271051, 328691, 449251, 576851, 853171},
%e {12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
%e {532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
%e {40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
%e {7312866926183, 15217609281335, 25813998655559, 56317915837223,
%e 101380456546055, 246072307427783, 351480840333479, 643872497781095,
%e 837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
%e 709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
%e 1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
%e 4951533162173037}
%t gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
%Y Cf. A011943, A081336, A034478.
%K nonn,tabl,uned
%O 1,2
%A _Roger L. Bagula_, Aug 18 2008