OFFSET
0,2
COMMENTS
Terms (with the offset changed to 1) are also the quotients arising from sequence A050621.
Partial sums of A020699. - Paul Barry, Sep 03 2003
Binomial transform of A081294. - Paul Barry, Jan 13 2005
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..250
Index entries for linear recurrences with constant coefficients, signature (6,-5).
FORMULA
E.g.f.: exp(3*x)*cosh(2*x). - Paul Barry, Mar 17 2003
G.f.: (1-3*x)/((1-x)*(1-5*x)). - Paul Barry, Sep 03 2003
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n, k)*binomial(2*k, 2*j). - Paul Barry, Jan 13 2005
a(n) = 6*a(n-1) - 5*a(n-2) for n>1, a(0)=1, a(1)=3. - Philippe Deléham, Jul 11 2005
a(n)^2 + (a(n) - 1)^2 = a(2*n). E.g., 63^2 + 62^2 = 7813 = a(6). - Gary W. Adamson, Jun 17 2006
a(n) = 5*a(n-1) - 2 for n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A034474(n)/2. - Elmo R. Oliveira, Dec 10 2023
EXAMPLE
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 313*x^4 + 1563*x^5 + 7813*x^6 + ...
MAPLE
seq((5^n + 1)/2, n=0..20); # Zerinvary Lajos, Jun 16 2007
MATHEMATICA
LinearRecurrence[{6, -5}, {1, 3}, 22] (* Ray Chandler, May 25 2021 *)
PROG
(Sage) [lucas_number2(n, 6, 5)/2 for n in range(0, 22)] # Zerinvary Lajos, Jul 08 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved