login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074477
Largest prime factor of 3^n - 1.
12
2, 2, 13, 5, 11, 13, 1093, 41, 757, 61, 3851, 73, 797161, 1093, 4561, 193, 34511, 757, 363889, 1181, 368089, 3851, 1001523179, 6481, 391151, 797161, 8209, 16493, 20381027, 4561, 4404047, 21523361, 2413941289, 34511, 2664097031, 530713
OFFSET
1,1
FORMULA
a(n) = A006530(A024023(n)). - Michel Marcus, Jul 18 2015
EXAMPLE
3^7 - 1 = 2186 = 2*1093, so a(7) = 1093.
MAPLE
A074477 := proc(n)
A006530( 3^n-1) ;
end proc: # R. J. Mathar, Jul 18 2015
# alternative:
a:= n-> max(seq(i[1], i=ifactors(3^n-1)[2])):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 18 2015
MATHEMATICA
Table[FactorInteger[3^n - 1] [[-1, 1]], {n, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
PROG
(PARI) for(n=1, 40, v=factor(3^n-1); print1(v[matsize(v)[1], 1], ", "))
(Magma) [Maximum(PrimeDivisors(3^n-1)): n in [1..40]]; // Vincenzo Librandi, Aug 23 2013
CROSSREFS
Cf. A006530 (largest prime factor), A024023 (3^n-1).
Cf. A074476 (largest prime factor of 3^n + 1), A005420 (largest prime factor of 2^n - 1), A074479 (largest prime factor of 5^n - 1).
Sequence in context: A130718 A268528 A173331 * A340587 A347080 A141575
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Aug 23 2002
EXTENSIONS
Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(660) in b-file from Amiram Eldar, Feb 01 2020
a(661)-a(690) in b-file from Max Alekseyev, May 22 2022
STATUS
approved