login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078015
Expansion of (1-x)/(1-x+x^2-2*x^3).
1
1, 0, -1, 1, 2, -1, -1, 4, 3, -3, 2, 11, 3, -4, 15, 25, 2, 7, 55, 52, 11, 69, 162, 115, 91, 300, 439, 321, 482, 1039, 1199, 1124, 2003, 3277, 3522, 4251, 7283, 10076, 11295, 15785, 24642, 31447, 38375, 56212, 80731, 101269, 132962, 193155, 262731, 335500, 459079, 649041
OFFSET
0,5
FORMULA
G.f.: (1-x)/(1-x+x^2-2*x^3).
a(n) = A077951(n) - A077951(n-1). - G. C. Greubel, Jun 29 2019
MATHEMATICA
LinearRecurrence[{1, -1, 2}, {1, 0, -1}, 60] (* or *) CoefficientList[Series[ (1-x)/(1-x+x^2-2*x^3), {x, 0, 60}], x] (* G. C. Greubel, Jun 29 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1-x)/(1-x+x^2-2*x^3)) \\ G. C. Greubel, Jun 29 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1-x+x^2-2*x^3) )); // G. C. Greubel, Jun 29 2019
(Sage) ((1-x)/(1-x+x^2-2*x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
(GAP) a:=[1, 0, -1];; for n in [4..60] do a[n]:=a[n-1]-a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 29 2019
CROSSREFS
Cf. A077951.
Sequence in context: A249577 A379611 A225924 * A366781 A240769 A357320
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved