|
|
A176972
|
|
a(n) = 7^n + 7*n + 1.
|
|
2
|
|
|
2, 15, 64, 365, 2430, 16843, 117692, 823593, 5764858, 40353671, 282475320, 1977326821, 13841287286, 96889010499, 678223072948, 4747561510049, 33232930569714, 232630513987327, 1628413597910576, 11398895185373277
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This is to 7 as A176916 is to 5, A176805 is to 3, and as A176691 is to 2. This is the 7th row of the array A[k,n] = k^n + k*n + 1. The subsequence of primes begins: 2, 16843, 1977326821, no more through a(200).
The next term that is prime, for n=1390, has 1174 digits. Then there are no further prime terms through n=5000. - Harvey P. Dale, Apr 17 2014
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 7*a(n-1) - 42*(n-1) + 1, with n > 0. For n=5, a(5) = 7*2430 - 42*4 + 1 = 16843. [Bruno Berselli, May 18 2010]
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
G.f.: (-2 + 3*x + 41*x^2) / ((7*x-1)*(x-1)^2). (End)
|
|
EXAMPLE
|
a(5) = 7^5 + 7*5 + 1 = 16843 is prime.
|
|
MATHEMATICA
|
Table[7^n+7n+1, {n, 0, 20}] (* or *) LinearRecurrence[{9, -15, 7}, {2, 15, 64}, 20] (* Harvey P. Dale, Apr 17 2014 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|