login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271828
a(n) = 4*n^3 - 18*n^2 + 27*n - 12.
1
1, 2, 15, 64, 173, 366, 667, 1100, 1689, 2458, 3431, 4632, 6085, 7814, 9843, 12196, 14897, 17970, 21439, 25328, 29661, 34462, 39755, 45564, 51913, 58826, 66327, 74440, 83189, 92598, 102691, 113492, 125025, 137314, 150383, 164256, 178957, 194510, 210939, 228268, 246521, 265722
OFFSET
1,2
COMMENTS
This sequence lists all positive integers n such that 2*n - 3 is a cube. Only for first term 2*n - 3 generates a negative cube that is -1. - Altug Alkan, Apr 15 2016
FORMULA
a(n+1) = A050492(n)+1.
G.f.: x*(1 - 2*x + 13*x^2 + 12*x^3)/(1 - x)^4. - Ilya Gutkovskiy, Apr 15 2016
MATHEMATICA
Table[((2 n - 1)^3 + 3)/2, {n, 0, 41}] (* or *)
Rest@ CoefficientList[Series[x (1 - 2 x + 13 x^2 + 12 x^3)/(1 - x)^4, {x, 0, 42}], x] (* Michael De Vlieger, Apr 16 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 2, 15, 64}, 70] (* Harvey P. Dale, Jun 06 2022 *)
PROG
(Magma) [((2*n-1)^3+3)/2: n in [0..40]];
(PARI) lista(nn) = for(n=0, nn, print1(((2*n-1)^3+3)/2, ", ")); \\ Altug Alkan, Apr 15 2016
CROSSREFS
Cf. positive integers n such that 2*n + k is a cube: this sequence (k=-3), A050492 (k=-1), A268201 (k=1).
Sequence in context: A084187 A267596 A119904 * A183264 A176972 A117393
KEYWORD
nonn,easy
AUTHOR
STATUS
approved