OFFSET
1,2
COMMENTS
Nonnegative numbers n such that 2*n+1 is a cube.
Or, (y^k-1)/2 for k odd. - N. J. A. Sloane, Mar 05 2022
REFERENCES
H. Brocard, #2158, L'Intermédiaire des Mathématiciens, 10 (1903), 282-283
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
G.f.: (13*x + 10*x^2 + x^3)/(-1 + x)^4. - Michael De Vlieger, Apr 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Apr 17 2016
EXAMPLE
a(1) = 0 because 4*1^3 - 6*1^2 + 3*1 - 1 = 0.
a(2) = 13 because 4*2^3 - 6*2^2 + 3*2 - 1 = 13.
MAPLE
MATHEMATICA
Table[((2 n - 1)^3 - 1)/2, {n, 41}] (* or *)
CoefficientList[Series[(13*x + 10*x^2 + x^3)/(-1 + x)^4, {x, 0, 40}],
x] (* Michael De Vlieger, Apr 16 2016 *)
PROG
(Magma) [((2*n-1)^3-1)/2: n in [0..41]];
(PARI) lista(nn) = for(n=1, nn, print1(4*n^3-6*n^2+3*n-1, ", ")); \\ Altug Alkan, Apr 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Juri-Stepan Gerasimov, Apr 16 2016
STATUS
approved