OFFSET
1,2
COMMENTS
In other words, positive integers k such that 2*k - 1 is a perfect cube. - Altug Alkan, Apr 15 2016
a(n) represents the first term in a sum of (2*n - 1)^3 consecutive integers which equals (2*n - 1)^6. - Patrick J. McNab, Dec 24 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n*(4*n^2-6*n+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=14, a(3)=63, a(4)=172. - Harvey P. Dale, Oct 02 2011
G.f.: x*(1+10*x+13*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 04 2012
a(n) = ((2n-1)^3 + 1)/2. - Dave Durgin, May 07 2014
E.g.f.: x*(4*x^2 + 6*x + 1)*exp(x). - G. C. Greubel, Apr 15 2016
EXAMPLE
* * * * *
a(2) = * + * * + * = 14.
* * * * *
MATHEMATICA
Table[n(n^2+(n-1)^2)+(n-1)2n(n-1), {n, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {1, 14, 63, 172}, 40] (* Harvey P. Dale, Oct 02 2011 *)
PROG
(Magma) [n*(4*n^2-6*n+3): n in [1..40]]; // Vincenzo Librandi, Oct 03 2011
(PARI) a(n)=n*(4*n^2-6*n+3) \\ Charles R Greathouse IV, Nov 10 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 27 1999
STATUS
approved