login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050492
Thickened cube numbers: a(n) = n*(n^2 + (n-1)^2) + (n-1)*2*n*(n-1).
7
1, 14, 63, 172, 365, 666, 1099, 1688, 2457, 3430, 4631, 6084, 7813, 9842, 12195, 14896, 17969, 21438, 25327, 29660, 34461, 39754, 45563, 51912, 58825, 66326, 74439, 83188, 92597, 102690, 113491, 125024, 137313, 150382, 164255, 178956
OFFSET
1,2
COMMENTS
In other words, positive integers k such that 2*k - 1 is a perfect cube. - Altug Alkan, Apr 15 2016
a(n) represents the first term in a sum of (2*n - 1)^3 consecutive integers which equals (2*n - 1)^6. - Patrick J. McNab, Dec 24 2016
FORMULA
a(n) = n*(4*n^2-6*n+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=14, a(3)=63, a(4)=172. - Harvey P. Dale, Oct 02 2011
G.f.: x*(1+10*x+13*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 04 2012
a(n) = ((2n-1)^3 + 1)/2. - Dave Durgin, May 07 2014
E.g.f.: x*(4*x^2 + 6*x + 1)*exp(x). - G. C. Greubel, Apr 15 2016
EXAMPLE
* * * * *
a(2) = * + * * + * = 14.
* * * * *
MATHEMATICA
Table[n(n^2+(n-1)^2)+(n-1)2n(n-1), {n, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {1, 14, 63, 172}, 40] (* Harvey P. Dale, Oct 02 2011 *)
PROG
(Magma) [n*(4*n^2-6*n+3): n in [1..40]]; // Vincenzo Librandi, Oct 03 2011
(PARI) a(n)=n*(4*n^2-6*n+3) \\ Charles R Greathouse IV, Nov 10 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 27 1999
STATUS
approved