login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255499
a(n) = (n^4 + 2*n^3 - n^2)/2.
3
0, 1, 14, 63, 184, 425, 846, 1519, 2528, 3969, 5950, 8591, 12024, 16393, 21854, 28575, 36736, 46529, 58158, 71839, 87800, 106281, 127534, 151823, 179424, 210625, 245726, 285039, 328888, 377609, 431550, 491071, 556544, 628353, 706894, 792575, 885816, 987049, 1096718, 1215279, 1343200
OFFSET
0,3
LINKS
L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645, DOI: 10.2140/involve.2014.7.627; see Eq. (1).
FORMULA
G.f.: x*(1+9*x+3*x^2-x^3)/(1-x)^5. - Vincenzo Librandi, Sep 05 2015
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Vincenzo Librandi, Sep 05 2015
a(n) = Sum_{k=n..n+n^2-1} k (the sum of the first n^2 integers starting with n). - Matthew Niemiro, Jun 26 2020
E.g.f.: (x/2)*(2 +12*x +8*x^2 +x^3)*exp(x). - G. C. Greubel, Sep 24 2021
MATHEMATICA
Table[n^4/2 + n^3 - n^2/2, {n, 0, 60}] (* or *) CoefficientList[Series[x (1 + 9 x + 3 x^2 - x^3)/(1 - x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 05 2015 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 14, 63, 184}, 50] (* Harvey P. Dale, Nov 11 2017 *)
PROG
(PARI) a(n) = n^4/2+n^3-n^2/2; \\ Michel Marcus, Sep 05 2015
(Magma) [n^4/2+n^3-n^2/2: n in [0..40]] // Vincenzo Librandi, Sep 05 2015
(Sage) [n^2*(n^2 +2*n -1)/2 for n in (0..40)] # G. C. Greubel, Sep 24 2021
CROSSREFS
Cf. A229738.
Sequence in context: A044152 A044533 A050492 * A229739 A339136 A221909
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 13 2015
STATUS
approved