login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255500
a(n) = (p^9 + 5*p^8 + 4*p^7 - p^6 - 5*p^5 + 2*p^4)/6 where p is the n-th prime.
3
352, 9909, 698125, 12045817, 584190541, 2487920149, 25846158097, 68520305701, 367691205289, 2846113596901, 5135516500321, 24650159312557, 61346708983561, 93685639700269, 206700247118737, 602622774810109, 1567842813615901, 2110866318916741, 4876836410298997
OFFSET
1,1
LINKS
L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [DOI]
MATHEMATICA
Table[(p^9+5p^8+4p^7-p^6-5p^5+2p^4)/6, {p, Prime[Range[20]]}] (* Harvey P. Dale, May 23 2020 *)
PROG
(Python)
from __future__ import division
from sympy import prime
A255500_list = []
for n in range(1, 10**2):
....p = prime(n)
....A255500_list.append(p**4*(p*(p*(p*(p*(p + 5) + 4) - 1) - 5) + 2)//6)
# Chai Wah Wu, Mar 14 2015
(Sage)
def p(n): return nth_prime(n)
def A255500(n): return p(n)^4*(p(n)^5 +5*p(n)^4 +4*p(n)^3 -p(n)^2 -5*p(n) +2)/6
[A255500(n) for n in (1..30)] # G. C. Greubel, Sep 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 13 2015
STATUS
approved