login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (p^9 + 5*p^8 + 4*p^7 - p^6 - 5*p^5 + 2*p^4)/6 where p is the n-th prime.
3

%I #26 Sep 26 2021 13:13:41

%S 352,9909,698125,12045817,584190541,2487920149,25846158097,

%T 68520305701,367691205289,2846113596901,5135516500321,24650159312557,

%U 61346708983561,93685639700269,206700247118737,602622774810109,1567842813615901,2110866318916741,4876836410298997

%N a(n) = (p^9 + 5*p^8 + 4*p^7 - p^6 - 5*p^5 + 2*p^4)/6 where p is the n-th prime.

%H G. C. Greubel, <a href="/A255500/b255500.txt">Table of n, a(n) for n = 1..1000</a>

%H L. Kaylor and D. Offner, <a href="https://projecteuclid.org/euclid.involve/1513733722">Counting matrices over a finite field with all eigenvalues in the field</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [<a href="http://dx.doi.org/10.2140/involve.2014.7.627">DOI</a>]

%t Table[(p^9+5p^8+4p^7-p^6-5p^5+2p^4)/6,{p,Prime[Range[20]]}] (* _Harvey P. Dale_, May 23 2020 *)

%o (Python)

%o from __future__ import division

%o from sympy import prime

%o A255500_list = []

%o for n in range(1,10**2):

%o ....p = prime(n)

%o ....A255500_list.append(p**4*(p*(p*(p*(p*(p + 5) + 4) - 1) - 5) + 2)//6)

%o # _Chai Wah Wu_, Mar 14 2015

%o (Sage)

%o def p(n): return nth_prime(n)

%o def A255500(n): return p(n)^4*(p(n)^5 +5*p(n)^4 +4*p(n)^3 -p(n)^2 -5*p(n) +2)/6

%o [A255500(n) for n in (1..30)] # _G. C. Greubel_, Sep 24 2021

%Y Cf. A229738, A229740, A255501.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Mar 13 2015