login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255501
a(n) = (n^9 + 5*n^8 + 4*n^7 - n^6 - 5*n^5 + 2*n^4)/6.
3
0, 1, 352, 9909, 107776, 698125, 3252096, 12045817, 37679104, 103495401, 256420000, 584190541, 1241471232, 2487920149, 4741917376, 8654360625, 15207694336, 25846158097, 42644120544, 68520305701, 107506720000, 165082149981, 248581222912, 367691205289
OFFSET
0,3
LINKS
L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645, see Theorem 6.1. [DOI]
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n^4 * (n^5 + 5*n^4 + 4*n^3 - n^2 - 5*n + 2)/6.
G.f.: x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10. - Colin Barker, Mar 14 2015
E.g.f.: (x/6)* (6 +1050*x +8856*x^2 +17562*x^3 +12741*x^4 +4059*x^5 +606*x^6 +41*x^7 +x^8)*exp(x). - G. C. Greubel, Sep 24 2021
MAPLE
fp:=n->(n^9+5*n^8+4*n^7-n^6-5*n^5+2*n^4)/6;
[seq(fp(n), n=0..40)];
MATHEMATICA
Table[n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6, {n, 0, 30}] (* G. C. Greubel, Sep 24 2021 *)
PROG
(Python)
# requires Python 3.2 or higher
from itertools import accumulate
A255501_list, m = [0], [60480, -208320, 273840, -168120, 45420, -2712, -648, 62, -1, 0]
for _ in range(10**2):
....m = list(accumulate(m))
A255501_list.append(m[-1]) # Chai Wah Wu, Mar 14 2015
(PARI)
concat(0, Vec(x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10 + O(x^100))) \\ Colin Barker, Mar 14 2015
(Sage) [n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6 for n in (0..30)] # G. C. Greubel, Sep 24 2021
CROSSREFS
Sequence in context: A256025 A256771 A256764 * A229740 A255500 A377770
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 13 2015
STATUS
approved