login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^9 + 5*n^8 + 4*n^7 - n^6 - 5*n^5 + 2*n^4)/6.
3

%I #24 Sep 26 2021 13:17:28

%S 0,1,352,9909,107776,698125,3252096,12045817,37679104,103495401,

%T 256420000,584190541,1241471232,2487920149,4741917376,8654360625,

%U 15207694336,25846158097,42644120544,68520305701,107506720000,165082149981,248581222912,367691205289

%N a(n) = (n^9 + 5*n^8 + 4*n^7 - n^6 - 5*n^5 + 2*n^4)/6.

%H Colin Barker, <a href="/A255501/b255501.txt">Table of n, a(n) for n = 0..1000</a>

%H L. Kaylor and D. Offner, <a href="https://projecteuclid.org/euclid.involve/1513733722">Counting matrices over a finite field with all eigenvalues in the field</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645, see Theorem 6.1. [<a href="http://dx.doi.org/10.2140/involve.2014.7.627">DOI</a>]

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

%F a(n) = n^4 * (n^5 + 5*n^4 + 4*n^3 - n^2 - 5*n + 2)/6.

%F G.f.: x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10. - _Colin Barker_, Mar 14 2015

%F E.g.f.: (x/6)* (6 +1050*x +8856*x^2 +17562*x^3 +12741*x^4 +4059*x^5 +606*x^6 +41*x^7 +x^8)*exp(x). - _G. C. Greubel_, Sep 24 2021

%p fp:=n->(n^9+5*n^8+4*n^7-n^6-5*n^5+2*n^4)/6;

%p [seq(fp(n), n=0..40)];

%t Table[n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6, {n, 0, 30}] (* _G. C. Greubel_, Sep 24 2021 *)

%o (Python)

%o # requires Python 3.2 or higher

%o from itertools import accumulate

%o A255501_list, m = [0], [60480, -208320, 273840, -168120, 45420, -2712, -648, 62, -1, 0]

%o for _ in range(10**2):

%o ....m = list(accumulate(m))

%o A255501_list.append(m[-1]) # _Chai Wah Wu_, Mar 14 2015

%o (PARI)

%o concat(0, Vec(x*(1 +342*x +6434*x^2 +24406*x^3 +24240*x^4 +5354*x^5 -242*x^6 -54*x^7 -x^8)/(1-x)^10 + O(x^100))) \\ _Colin Barker_, Mar 14 2015

%o (Sage) [n^4*(n^5 +5*n^4 +4*n^3 -n^2 -5*n +2)/6 for n in (0..30)] # _G. C. Greubel_, Sep 24 2021

%Y Cf. A229740, A255500.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Mar 13 2015