login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255496
3rd diagonal of triangle in A255494.
4
1, 38, 1106, 26544, 567203, 11179686, 207768576, 3692419776, 63361188037, 1057109514902, 17235551954894, 275697361933728, 4339725043253447, 67384965236252310, 1034147721558836220, 15711425790758327952, 236612932874975360809, 3536182524466029241958, 52494462902614684280330
OFFSET
0,2
LINKS
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
Index entries for linear recurrences with constant coefficients, signature (44,-649,2770,11885,-65240,-215431,-67286,139956,-23560,-2400).
FORMULA
From G. C. Greubel, Sep 20 2021: (Start)
a(n) = 12*a(n-1) + P(n+1)*A255495(n), where P(n) = A000129(n).
a(n) = (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n), where P(n) = A000129(n), Q(n) = A002203(n).
G.f.: (1 -6*x +83*x^2 -228*x^3 -84*x^4 -200*x^5)/((1+2*x)*(1-12*x)*(1 +2*x -x^2)*(1 -10*x -25*x^2)*(1 -12*x +4*x^2)*(1 -14*x -x^2)). (End)
MATHEMATICA
a[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
PROG
(Sage)
def P(n): return lucas_number1(n, 2, -1)
def Q(n): return lucas_number2(n, 2, -1)
def a(n): return (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 06 2015
EXTENSIONS
3 more terms. - R. J. Mathar, Jun 14 2015
Terms a(12) onward added by G. C. Greubel, Sep 20 2021
STATUS
approved