OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..850
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
Index entries for linear recurrences with constant coefficients, signature (44,-649,2770,11885,-65240,-215431,-67286,139956,-23560,-2400).
FORMULA
From G. C. Greubel, Sep 20 2021: (Start)
a(n) = (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n), where P(n) = A000129(n), Q(n) = A002203(n).
G.f.: (1 -6*x +83*x^2 -228*x^3 -84*x^4 -200*x^5)/((1+2*x)*(1-12*x)*(1 +2*x -x^2)*(1 -10*x -25*x^2)*(1 -12*x +4*x^2)*(1 -14*x -x^2)). (End)
MATHEMATICA
a[n_]:= (12)^(n+4) -(-2)^(n+1) -2^n*LucasL[2*n+9, 2] -5^(n+4)*Fibonacci[n+5, 2] +(1/10)*Fibonacci[n+4, 2]*(Fibonacci[n+4, 2]^2 +(-1)^n);
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
PROG
(Sage)
def P(n): return lucas_number1(n, 2, -1)
def Q(n): return lucas_number2(n, 2, -1)
def a(n): return (12)^(n+4) - (-2)^(n+1) - 2^n*Q(2*n+9) - 5^(n+4)*P(n+5) + (1/10)*P(n+4)*(P(n+4)^2 + (-1)^n)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 06 2015
EXTENSIONS
3 more terms. - R. J. Mathar, Jun 14 2015
Terms a(12) onward added by G. C. Greubel, Sep 20 2021
STATUS
approved