login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255494
Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
6
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 38, 130, 38, 1, 1, 105, 1106, 1106, 105, 1, 1, 280, 8575, 26544, 8575, 280, 1, 1, 729, 62475, 567203, 567203, 62475, 729, 1, 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1, 1, 4717, 2939208, 207768576, 1736613466, 1736613466, 207768576, 2939208, 4717, 1
OFFSET
0,5
COMMENTS
Note that Table 8 by Falcon should be labeled with the powers n (not r) and that the labels are off by 1. - R. J. Mathar, Jun 14 2015
LINKS
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
FORMULA
From G. C. Greubel, Sep 19 2021: (Start)
T(n, k) = P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k), where T(n, 0) = T(n, n) = 1 and P(n) = A000129(n).
T(n, k) = T(n, n-k).
T(n, 1) = A094706(n).
T(n, 2) = A255495(n-2).
T(n, 3) = A255496(n-3).
T(n, 4) = A255497(n-4).
T(n, 5) = A255498(n-5). (End)
EXAMPLE
Triangle begins:
1;
1, 1; # see A079291
1, 4, 1; # see A110272
1, 13, 13, 1;
1, 38, 130, 38, 1;
1, 105, 1106, 1106, 105, 1;
1, 280, 8575, 26544, 8575, 280, 1;
1, 729, 62475, 567203, 567203, 62475, 729, 1;
1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 19 2021 *)
PROG
(Magma)
P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;
function T(n, k)
if k eq 0 or k eq n then return 1;
else return P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]];
(Sage)
@CachedFunction
def P(n): return lucas_number1(n, 2, -1)
def T(n, k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 19 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 06 2015
STATUS
approved