login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255495
2nd diagonal of triangle in A255494.
5
1, 13, 130, 1106, 8575, 62475, 435576, 2939208, 19342285, 124800361, 792586270, 4969028750, 30822650251, 189500937303, 1156406300340, 7012380492516, 42294614785465, 253926386816725, 1518506730836026, 9050029200532298, 53778595325886295, 318762380704793571, 1885254096749834160
OFFSET
0,2
LINKS
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
FORMULA
G.f.: (1 -x +4*x^2)/((1+x)*(1-5*x)*(1-6*x+x^2)*(1-4*x-4*x^2)). - R. J. Mathar, Jun 14 2015
From G. C. Greubel, Sep 20 2021: (Start)
a(n) = (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3)), where P(n) = A000129(n).
a(n) = 5*a(n-1) + P(n+1)*(P(n+3) - 2^(n+2)) = 5*a(n) + P(n+1)*A094706(n+1). (End)
MATHEMATICA
a[n_]:= (1/2)*(Fibonacci[n+3, 2]*Fibonacci[n+4, 2] + 2^(n+4)*Fibonacci[n+4, 2] - 2*5^(n+3));
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Sep 20 2021 *)
PROG
(Magma) I:=[1, 13, 130, 1106, 8575, 62475]; [n le 6 select I[n] else 14*Self(n-1) - 56*Self(n-2) +14*Self(n-3) +189*Self(n-4) + 84*Self(n-5) -20*Self(n-6): n in [1..31]]; // G. C. Greubel, Sep 20 2021
(Sage)
def P(n): return lucas_number1(n, 2, -1)
def A255495(n): return (1/2)*(P(n+3)*P(n+4) + 2^(n+4)*P(n+4) - 2*5^(n+3))
[A255495(n) for n in (0..30)] # G. C. Greubel, Sep 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 06 2015
EXTENSIONS
Terms a(13) onward from G. C. Greubel, Sep 20 2021
STATUS
approved