login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.
6

%I #34 Nov 17 2022 09:17:17

%S 1,1,1,1,4,1,1,13,13,1,1,38,130,38,1,1,105,1106,1106,105,1,1,280,8575,

%T 26544,8575,280,1,1,729,62475,567203,567203,62475,729,1,1,1866,435576,

%U 11179686,32897774,11179686,435576,1866,1,1,4717,2939208,207768576,1736613466,1736613466,207768576,2939208,4717,1

%N Triangle read by rows: coefficients of numerator of generating functions for powers of Pell numbers.

%C Note that Table 8 by Falcon should be labeled with the powers n (not r) and that the labels are off by 1. - _R. J. Mathar_, Jun 14 2015

%H G. C. Greubel, <a href="/A255494/b255494.txt">Rows n = 0..50 of the triangle, flattened</a>

%H S. Falcon, <a href="http://saspublisher.com/wp-content/uploads/2014/06/SJET24C669-675.pdf">On The Generating Functions of the Powers of the K-Fibonacci Numbers</a>, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.

%F From _G. C. Greubel_, Sep 19 2021: (Start)

%F T(n, k) = P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k), where T(n, 0) = T(n, n) = 1 and P(n) = A000129(n).

%F T(n, k) = T(n, n-k).

%F T(n, 1) = A094706(n).

%F T(n, 2) = A255495(n-2).

%F T(n, 3) = A255496(n-3).

%F T(n, 4) = A255497(n-4).

%F T(n, 5) = A255498(n-5). (End)

%e Triangle begins:

%e 1;

%e 1, 1; # see A079291

%e 1, 4, 1; # see A110272

%e 1, 13, 13, 1;

%e 1, 38, 130, 38, 1;

%e 1, 105, 1106, 1106, 105, 1;

%e 1, 280, 8575, 26544, 8575, 280, 1;

%e 1, 729, 62475, 567203, 567203, 62475, 729, 1;

%e 1, 1866, 435576, 11179686, 32897774, 11179686, 435576, 1866, 1;

%t T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, Fibonacci[n-k+1, 2]*T[n-1, k-1] + Fibonacci[k+1, 2]*T[n-1, k]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 19 2021 *)

%o (Magma)

%o P:= func< n | Round(((1 + Sqrt(2))^n - (1 - Sqrt(2))^n)/(2*Sqrt(2))) >;

%o function T(n,k)

%o if k eq 0 or k eq n then return 1;

%o else return P(n-k+1)*T(n-1,k-1) + P(k+1)*T(n-1,k);

%o end if; return T;

%o end function;

%o [T(n,k): k in [0..n], n in [0..12]];

%o (Sage)

%o @CachedFunction

%o def P(n): return lucas_number1(n, 2, -1)

%o def T(n,k): return 1 if (k==0 or k==n) else P(n-k+1)*T(n-1, k-1) + P(k+1)*T(n-1, k)

%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Sep 19 2021

%Y Cf. A000129, A079291, A094706, A110272.

%Y Diagonals: A094706, A255495, A255496, A255497, A255498.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_, Mar 06 2015