The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079291 Squares of Pell numbers. 21
 0, 1, 4, 25, 144, 841, 4900, 28561, 166464, 970225, 5654884, 32959081, 192099600, 1119638521, 6525731524, 38034750625, 221682772224, 1292061882721, 7530688524100, 43892069261881, 255821727047184, 1491038293021225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS (-1)^(n+1)*a(n) is the r=-4 member of the r-" of sequences S_r(n), n>=1, defined in A092184 where more information can be found. Binomial transform of A086346. - Johannes W. Meijer, Aug 01 2010 In general, squaring the terms of a Horadam sequence with signature (c,d) will result in a third-order recurrence with signature (c^2+d, c^2*d+d^2, -d^3). - Gary Detlefs, Nov 11 2021 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Joerg Arndt, Matters Computational (The Fxtbook), sect. 32.1.5, pp. 626-627 T. Mansour, A note on sum of k-th power of Horadam's sequence, arXiv:math/0302015 [math.CO], 2003. T. Mansour, Squaring the terms of an ell-th order linear recurrence, arXiv:math/0303138 [math.CO], 2003. P. Stanica, Generating functions, weighted and non-weighted sums for powers of second-order recurrence sequences, arXiv:math/0010149 [math.CO], 2000. Index entries for linear recurrences with constant coefficients, signature (5,5,-1). FORMULA G.f.: x*(1-x)/((1+x)*(1-6*x+x^2)). a(n) = (r^n + (1/r)^n - 2*(-1)^n)/8, with r = 3 + sqrt(8). a(n+3) = 5*a(n+2) + 5*a(n+1) - a(n). L.g.f.: (1/8)*log((1+2*x+x^2)/(1-6*x+x^2)) = Sum_{n>=0} (a(n)/n)*x^n, see p. 627 of the Fxtbook link; special case of the following: let v(0)=0, v(1)=1, and v(n) = u*v(n-1) + v(n-2), then (1/A)*log((1+2*x+x^2)/(1-(2-A)*x+x^2)) = Sum_{n>=0} v(n)^2/n*x^n where A = u^2 + 4. - Joerg Arndt, Apr 08 2011 a(n+1) = Sum_{k=0..n} ( (-1)^(n-k)*A001653(k) ); e.g., 144 = -1 + 5 - 29 + 169; 25 = 1 - 5 + 29. - Charlie Marion, Jul 16 2003 a(n) = A000129(n)^2. a(n) = (T(n, 3) - (-1)^n)/4 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n) = ((3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n )/2. - Wolfdieter Lang, Oct 18 2004 a(n) is the rightmost term of M^n * [1 0 0] where M is the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. a(n+1) = leftmost term. E.g., a(6) = 4900, a(5) = 841 since M^5 * [1 0 0] = [4900 2030 841]. - Gary W. Adamson, Oct 31 2004 a(n) = ( (-1)^(n+1) + A001109(n+1) - 3*A001109(n) )/4. - R. J. Mathar, Nov 16 2007 a(n) = ( (((1 - sqrt(2))^n + (1 + sqrt(2))^n) /2 )^2 + (-1)^(n+1) )/2. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007 Lim_{k -> infinity} ( a(n+k)/a(k) ) = A001541(n) + 2*A001109(n)*sqrt(2). - Johannes W. Meijer, Aug 01 2010 For n>0, a(2*n) = 6*a(2*n-1) - a(2*n-2) - 2, a(2*n+1) = 6*a(2*n) - a(2*n-1) + 2. - Charlie Marion, Sep 24 2011 a(n) = (1/8)*(A002203(2*n) - 2*(-1)^n). - G. C. Greubel, Sep 17 2021 MAPLE with(combinat):seq(fibonacci(i, 2)^2, i=0..31); # Zerinvary Lajos, Mar 20 2008 MATHEMATICA CoefficientList[Series[x(1-x)/((1+x)*(1-6x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 17 2013 *) LinearRecurrence[{5, 5, -1}, {0, 1, 4}, 40] (* Harvey P. Dale, Dec 20 2015 *) Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Sep 17 2021 *) PROG (MAGMA) I:=[0, 1, 4]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2) - Self(n-3): n in [1..31]]; // Vincenzo Librandi, May 17 2013 (Sage) [lucas_number1(n, 2, -1)^2 for n in (0..30)] # G. C. Greubel, Sep 17 2021 CROSSREFS Cf. A000129, A001254, A001109, A001541, A001653. Cf. A002203, A007598, A084158, A086346, A092184. Sequence in context: A278275 A301836 A275177 * A173612 A349540 A072221 Adjacent sequences:  A079288 A079289 A079290 * A079292 A079293 A079294 KEYWORD easy,nonn AUTHOR Ralf Stephan, Feb 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 00:46 EST 2022. Contains 350473 sequences. (Running on oeis4.)