




OFFSET

0,2


COMMENTS

Next term is too large to include.
Sum_{n>0} 1/a(n) = 0.1666694223985890... or about 1/6. This is evident since 1/3! =0.166666666666.. 1/9! =0.0000027557319223985.. 1/27!=0.00000000000000000000000000091836898637955461.. for example shows that succeeding terms have little influence on the first term 1/6. A000722 has the same property of about 1/2 but it is not evident since in 1/2! + 1/4! + 1/8! 1/4! and 1/8! have an immediate effect on the first term 1/2. So the limit of sum(1/(x^n)!) > 1/x! as x,n > oo


LINKS

Table of n, a(n) for n=0..3.


FORMULA

a(n) = A000142(A000244(n)).  Michel Marcus, Sep 14 2015


PROG

(PARI) atonfact(a, n) = {sr=0; for(x=1, n, y =(a^x)!; \((a1)^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) } usage: ? atonfact(3, n) n=1, 2, ..
(PARI) a(n) = (3^n)! \\ Michel Marcus, Sep 14 2015


CROSSREFS

Cf. A000142, A000244.
Sequence in context: A238821 A112642 A067503 * A072234 A172823 A182791
Adjacent sequences: A079285 A079286 A079287 * A079289 A079290 A079291


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, Feb 08 2003


STATUS

approved



