login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares of Pell numbers.
27

%I #108 Dec 03 2024 11:19:04

%S 0,1,4,25,144,841,4900,28561,166464,970225,5654884,32959081,192099600,

%T 1119638521,6525731524,38034750625,221682772224,1292061882721,

%U 7530688524100,43892069261881,255821727047184,1491038293021225

%N Squares of Pell numbers.

%C (-1)^(n+1)*a(n) is the r=-4 member of the r-" of sequences S_r(n), n>=1, defined in A092184 where more information can be found.

%C Binomial transform of A086346. - _Johannes W. Meijer_, Aug 01 2010

%C In general, squaring the terms of a Horadam sequence with signature (c,d) will result in a third-order recurrence with signature (c^2+d, c^2*d+d^2, -d^3). - _Gary Detlefs_, Nov 11 2021

%C (Conjectured) For any primitive Pythagorean triple of the form (X, Y, Z=Y+1), it appears that Y or Z will always be (and only be) a square Pell number if X = A001333(n), for n > 1. If n is even, Y is always a square Pell number, and if n is odd, then Z is always a square Pell number. For example: (3, 4, 5), (7, 24, 25), (17, 144, 145), (41, 840, 841), (99, 4900, 4901). - _Jules Beauchamp_, Feb 02 2022

%C a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/2,1/2)-fences, black half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal), and white half-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using black (1/4,1/4)-fences, white (1/4,1/4)-fences, and (1/4,3/4)-fences. - _Michael A. Allen_, Dec 29 2022

%H Vincenzo Librandi, <a href="/A079291/b079291.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael A. Allen and Kenneth Edwards, <a href="https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, sect. 32.1.5, pp. 626-627

%H Sergio Falcon, <a href="https://ikprress.org/index.php/AJOMCOR/article/view/442">Some series of reciprocal k-Fibonacci numbers</a>, Asian Journal of Mathematics and Computer Research, Vol. 11, No. 3 (2016), pp. 184-191; <a href="https://www.researchgate.net/publication/297715665_SOME_SERIES_OF_RECIPROCAL_k-FIBONACCI_NUMBERS">ResearchGate link</a>.

%H Toufik Mansour, <a href="https://arxiv.org/abs/math/0302015">A note on sum of k-th power of Horadam's sequence</a>, arXiv:math/0302015 [math.CO], 2003.

%H Toufik Mansour, <a href="https://arxiv.org/abs/math/0303138">Squaring the terms of an ell-th order linear recurrence</a>, arXiv:math/0303138 [math.CO], 2003.

%H Pantelimon Stanica, <a href="https://arxiv.org/abs/math/0010149">Generating functions, weighted and non-weighted sums for powers of second-order recurrence sequences</a>, arXiv:math/0010149 [math.CO], 2000.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%F G.f.: x*(1-x)/((1+x)*(1-6*x+x^2)).

%F a(n) = (r^n + (1/r)^n - 2*(-1)^n)/8, with r = 3 + sqrt(8).

%F a(n+3) = 5*a(n+2) + 5*a(n+1) - a(n).

%F L.g.f.: (1/8)*log((1+2*x+x^2)/(1-6*x+x^2)) = Sum_{n>=0} (a(n)/n)*x^n, see p. 627 of the Fxtbook link; special case of the following: let v(0)=0, v(1)=1, and v(n) = u*v(n-1) + v(n-2), then (1/A)*log((1+2*x+x^2)/(1-(2-A)*x+x^2)) = Sum_{n>=0} v(n)^2/n*x^n where A = u^2 + 4. - _Joerg Arndt_, Apr 08 2011

%F a(n+1) = Sum_{k=0..n} ( (-1)^(n-k)*A001653(k) ); e.g., 144 = -1 + 5 - 29 + 169; 25 = 1 - 5 + 29. - _Charlie Marion_, Jul 16 2003

%F a(n) = A000129(n)^2.

%F a(n) = (T(n, 3) - (-1)^n)/4 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n) = ((3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n )/2. - _Wolfdieter Lang_, Oct 18 2004

%F a(n) is the rightmost term of M^n * [1 0 0] where M is the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. a(n+1) = leftmost term. E.g., a(6) = 4900, a(5) = 841 since M^5 * [1 0 0] = [4900 2030 841]. - _Gary W. Adamson_, Oct 31 2004

%F a(n) = ( (-1)^(n+1) + A001109(n+1) - 3*A001109(n) )/4. - _R. J. Mathar_, Nov 16 2007

%F a(n) = ( (((1 - sqrt(2))^n + (1 + sqrt(2))^n) /2 )^2 + (-1)^(n+1) )/2. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007

%F Lim_{k -> infinity} ( a(n+k)/a(k) ) = A001541(n) + 2*A001109(n)*sqrt(2). - _Johannes W. Meijer_, Aug 01 2010

%F For n>0, a(2*n) = 6*a(2*n-1) - a(2*n-2) - 2, a(2*n+1) = 6*a(2*n) - a(2*n-1) + 2. - _Charlie Marion_, Sep 24 2011

%F a(n) = (1/8)*(A002203(2*n) - 2*(-1)^n). - _G. C. Greubel_, Sep 17 2021

%F Conjectured formula for (X, Y, Z) for primitive Pythagorean triple of the form (X, Y, Z=Y+1) is (A001333(n)^2, A079291(n)^2, A079291(n)^2-1) or (A001333(n)^2), A079291(n)^2-1, A079291(n)^2). As a closed formula (X, Y, Z) = ((1-sqrt(2))^n + (1+sqrt(2)) ^n))/2, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2)- 4)/8, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2)+4)/8. - _Jules Beauchamp_, Feb 02 2022

%F From _Michael A. Allen_, Dec 29 2022: (Start)

%F a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.

%F a(n+1) = (1 + (-1)^n)/2 + 4*Sum_{k=1..n} ( k*a(n+1-k) ). (End)

%F Product_{n>=2} (1 + (-1)^n/a(n)) = (1 + sqrt(2))/2 (A174968) (Falcon, 2016, p. 189, eq. (3.1)). - _Amiram Eldar_, Dec 03 2024

%p with(combinat):seq(fibonacci(i,2)^2, i=0..31); # _Zerinvary Lajos_, Mar 20 2008

%t CoefficientList[Series[x(1-x)/((1+x)*(1-6x+x^2)), {x, 0, 30}], x] (* _Vincenzo Librandi_, May 17 2013 *)

%t LinearRecurrence[{5,5,-1},{0,1,4},40] (* _Harvey P. Dale_, Dec 20 2015 *)

%t Fibonacci[Range[0, 30], 2]^2 (* _G. C. Greubel_, Sep 17 2021 *)

%o (Magma) I:=[0,1,4]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2) - Self(n-3): n in [1..31]]; // _Vincenzo Librandi_, May 17 2013

%o (Sage) [lucas_number1(n, 2, -1)^2 for n in (0..30)] # _G. C. Greubel_, Sep 17 2021

%Y Cf. A000129, A001254, A001109, A001541, A001653, A174968.

%Y Cf. A002203, A007598, A084158 (partial sums), A086346, A092184.

%K easy,nonn

%O 0,3

%A _Ralf Stephan_, Feb 08 2003