login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001254 Squares of Lucas numbers. 23
4, 1, 9, 16, 49, 121, 324, 841, 2209, 5776, 15129, 39601, 103684, 271441, 710649, 1860496, 4870849, 12752041, 33385284, 87403801, 228826129, 599074576, 1568397609, 4106118241, 10749957124, 28143753121, 73681302249, 192900153616, 505019158609, 1322157322201, 3461452808004, 9062201101801, 23725150497409 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 36, 60.

Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001. [Note that Identity 34.7 on page 404 is wrong. - _Alonso Del Arte_, Sep 07 2010]

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.

Tanya Khovanova, Recursive Sequences

T. Mansour, A note on sum of k-th power of Horadam's sequence, arXiv:math/0302015 [math.CO], 2003.

P. Stanica, Generating functions, weighted and non-weighted sums for powers of second-order recurrence sequences, arXiv:math/0010149 [math.CO], 2000.

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = (A000032(n))^2.

G.f.: ( 4-7*x-x^2 ) / ( (1+x)*(x^2-3*x+1) ). - Len Smiley, Nov 30 2001

From Ralf Stephan, Feb 08 2003: (Start)

a(n) = r^n + (1/r)^n + 2*(-1)^n, with r=(3+sqrt(5))/2.

a(n+3) = 2*a(n+2) + 2*a(n+1) - a(n). (End)

a(n) = L(2n) + 2(-1)^n = L(n-1)*L(n+1) + 5(-1)^n.

a(n) = 5*Fib(n)^2 + 4*(-1)^n.

a(n) + a(n+1) = A106729(n). - R. J. Mathar, Nov 17 2011

E.g.f.: 2*exp(-x)*(exp(5*x/2)*cosh(sqrt(5)*x/2)+1). - Wolfdieter Lang, Jan 14 2012

a(n) = 1/4*( a(n-2) - a(n-1) - a(n+1) + a(n+2) ). The same recurrence holds for A007598. - Peter Bala, Aug 18 2015

For n>1, a(n)=(10*F(2*n-1) + 2*L(n-2)*L(n+1))/4 where F(n)=A000045(n), L(n)=A000204(n). - J. M. Bergot, Nov 25 2015

a(n) = (L(n-2)*L(n+2) + L(n-1)*L(n+1))/2 with L(k)=A000032(k). - J. M. Bergot, May 25 2017

MAPLE

with(combinat):seq(5*fibonacci(n)^2+4*(-1)^n, n=0..26)

MATHEMATICA

Table[LucasL[n]^2, {n, 0, 29}] (* Alonso del Arte, Apr 11 2011 *)

PROG

(MAGMA) [ Lucas(n)^2 : n in [0..120]]; // Vincenzo Librandi, Apr 14 2011

(PARI) a(n)=5*fibonacci(n)^2 + 4*(-1)^n \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000032, A000204.

Cf. A007598, A079291.

With alternating signs, cf. A075150.

Bisection of A001638 and A006499. First differences of A005970.

Second row of array A103324.

Sequence in context: A193580 A244761 A075150 * A143763 A278350 A128626

Adjacent sequences:  A001251 A001252 A001253 * A001255 A001256 A001257

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 11:40 EDT 2017. Contains 288821 sequences.