login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285236
Number of entries in the eighth cycles of all permutations of [n].
2
1, 38, 964, 21018, 431007, 8671656, 175065071, 3591984289, 75473055841, 1631318215818, 36369569578502, 837619857754240, 19943142053389024, 491010028537071248, 12499878460133012064, 328936666440527737296, 8943724877454118086096, 251125623168859020015072
OFFSET
8,2
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = A185105(n,8).
Recurrence: (n-8)*(n-5)*a(n) = (7*n^3 - 117*n^2 + 618*n - 1036)*a(n-1) - (21*n^4 - 450*n^3 + 3521*n^2 - 11996*n + 15092)*a(n-2) + 5*(7*n^5 - 190*n^4 + 2039*n^3 - 10842*n^2 + 28614*n - 30016)*a(n-3) - (35*n^6 - 1185*n^5 + 16635*n^4 - 124015*n^3 + 518011*n^2 - 1149493*n + 1058400)*a(n-4) + (n-6)*(21*n^6 - 747*n^5 + 11033*n^4 - 86597*n^3 + 380805*n^2 - 888917*n + 859586)*a(n-5) - (7*n^8 - 352*n^7 + 7728*n^6 - 96726*n^5 + 754656*n^4 - 3756732*n^3 + 11646888*n^2 - 20547489*n + 15780868)*a(n-6) + (n-7)^8*(n-4)*a(n-7), for n>8. - Vaclav Kotesovec, Apr 25 2017
a(n) ~ n!*n/256. - Vaclav Kotesovec, Apr 25 2017
MAPLE
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
(j-1)!, j=1..n)))
end:
a:= n-> coeff(b(n, 8), x, 1):
seq(a(n), n=8..30);
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
a[n_] := Coefficient[b[n, 8], x, 1];
Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
CROSSREFS
Column k=8 of A185105.
Sequence in context: A028224 A028218 A028199 * A208949 A255496 A098612
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2017
STATUS
approved