Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 01 2018 08:05:48
%S 1,38,964,21018,431007,8671656,175065071,3591984289,75473055841,
%T 1631318215818,36369569578502,837619857754240,19943142053389024,
%U 491010028537071248,12499878460133012064,328936666440527737296,8943724877454118086096,251125623168859020015072
%N Number of entries in the eighth cycles of all permutations of [n].
%C Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
%H Alois P. Heinz, <a href="/A285236/b285236.txt">Table of n, a(n) for n = 8..450</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>
%F a(n) = A185105(n,8).
%F Recurrence: (n-8)*(n-5)*a(n) = (7*n^3 - 117*n^2 + 618*n - 1036)*a(n-1) - (21*n^4 - 450*n^3 + 3521*n^2 - 11996*n + 15092)*a(n-2) + 5*(7*n^5 - 190*n^4 + 2039*n^3 - 10842*n^2 + 28614*n - 30016)*a(n-3) - (35*n^6 - 1185*n^5 + 16635*n^4 - 124015*n^3 + 518011*n^2 - 1149493*n + 1058400)*a(n-4) + (n-6)*(21*n^6 - 747*n^5 + 11033*n^4 - 86597*n^3 + 380805*n^2 - 888917*n + 859586)*a(n-5) - (7*n^8 - 352*n^7 + 7728*n^6 - 96726*n^5 + 754656*n^4 - 3756732*n^3 + 11646888*n^2 - 20547489*n + 15780868)*a(n-6) + (n-7)^8*(n-4)*a(n-7), for n>8. - _Vaclav Kotesovec_, Apr 25 2017
%F a(n) ~ n!*n/256. - _Vaclav Kotesovec_, Apr 25 2017
%p b:= proc(n, i) option remember; expand(`if`(n=0, 1,
%p add((p-> p+`if`(i=1, coeff(p, x, 0)*j*x, 0))(
%p b(n-j, max(0, i-1)))*binomial(n-1, j-1)*
%p (j-1)!, j=1..n)))
%p end:
%p a:= n-> coeff(b(n, 8), x, 1):
%p seq(a(n), n=8..30);
%t b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[Function[p, p + If[i == 1, Coefficient[p, x, 0]*j*x, 0]][b[n - j, Max[0, i - 1]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]];
%t a[n_] := Coefficient[b[n, 8], x, 1];
%t Table[a[n], {n, 8, 30}] (* _Jean-François Alcover_, Jun 01 2018, from Maple *)
%Y Column k=8 of A185105.
%K nonn
%O 8,2
%A _Alois P. Heinz_, Apr 15 2017