login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285234 Number of entries in the sixth cycles of all permutations of [n]. 2
1, 23, 382, 5780, 86029, 1301673, 20338679, 330737236, 5618265376, 99849949772, 1857170751804, 36135886878072, 734947859916792, 15608257104179952, 345724111468700496, 7977315239656638912, 191516062334747746752, 4778050475554642998144, 123731984754223222096512 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

COMMENTS

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 6..449

Wikipedia, Permutation

FORMULA

a(n) = A185105(n,6).

a(n) ~ n!*n/64. - Vaclav Kotesovec, Apr 25 2017

MAPLE

a:= proc(n) option remember; `if`(n<7, [0$6, 1][n+1],

      ((5*n^3-58*n^2+207*n-230)*a(n-1)-(10*n^4-152*n^3

       +835*n^2-1973*n+1690)*a(n-2)+(n-4)*(10*n^4

       -158*n^3+909*n^2-2251*n+2000)*a(n-3)-(5*n^6

       -127*n^5+1330*n^4-7335*n^3+22396*n^2-35717*n

       +23058)*a(n-4)+(n-5)^6*(n-2)*a(n-5))/((n-3)*(n-6)))

    end:

seq(a(n), n=6..25);

MATHEMATICA

b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];

a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]][[6]];

Table[a[n], {n, 6, 25}] (* Jean-Fran├žois Alcover, Jun 01 2018, after Alois P. Heinz *)

CROSSREFS

Column k=6 of A185105.

Sequence in context: A016325 A016324 A264321 * A046493 A014926 A016267

Adjacent sequences:  A285231 A285232 A285233 * A285235 A285236 A285237

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)