login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285234
Number of entries in the sixth cycles of all permutations of [n].
2
1, 23, 382, 5780, 86029, 1301673, 20338679, 330737236, 5618265376, 99849949772, 1857170751804, 36135886878072, 734947859916792, 15608257104179952, 345724111468700496, 7977315239656638912, 191516062334747746752, 4778050475554642998144, 123731984754223222096512
OFFSET
6,2
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = A185105(n,6).
a(n) ~ n!*n/64. - Vaclav Kotesovec, Apr 25 2017
MAPLE
a:= proc(n) option remember; `if`(n<7, [0$6, 1][n+1],
((5*n^3-58*n^2+207*n-230)*a(n-1)-(10*n^4-152*n^3
+835*n^2-1973*n+1690)*a(n-2)+(n-4)*(10*n^4
-158*n^3+909*n^2-2251*n+2000)*a(n-3)-(5*n^6
-127*n^5+1330*n^4-7335*n^3+22396*n^2-35717*n
+23058)*a(n-4)+(n-5)^6*(n-2)*a(n-5))/((n-3)*(n-6)))
end:
seq(a(n), n=6..25);
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]][[6]];
Table[a[n], {n, 6, 25}] (* Jean-François Alcover, Jun 01 2018, after Alois P. Heinz *)
CROSSREFS
Column k=6 of A185105.
Sequence in context: A016325 A016324 A264321 * A046493 A014926 A353117
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2017
STATUS
approved