login
A285232
Number of entries in the fourth cycles of all permutations of [n].
2
1, 12, 119, 1177, 12217, 135302, 1606446, 20450052, 278604252, 4051377504, 62702222112, 1029832270848, 17899305402240, 328353314855040, 6341705227082880, 128655706986282240, 2735782096305749760, 60855815849067648000, 1413487524282196608000
OFFSET
4,2
COMMENTS
Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = A185105(n,4).
a(n) ~ n!*n/16. - Vaclav Kotesovec, Apr 25 2017
MAPLE
a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1],
((n-2)*(3*n^2-13*n+6)*a(n-1)-(3*n^4-26*n^3+76*n^2
-81*n+16)*a(n-2)+(n-3)^4*n*a(n-3))/((n-1)*(n-4)))
end:
seq(a(n), n=4..30);
MATHEMATICA
a[3]=0; a[4]=1; a[5]=12; a[n_] := a[n] = ((n-2)(3n^2 - 13n + 6) a[n-1] - ( 3n^4 - 26n^3 + 76n^2 - 81n + 16)a[n-2]+(n-3)^4 n a[n-3])/((n-1)(n-4));
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *)
CROSSREFS
Column k=4 of A185105.
Sequence in context: A163950 A025132 A001712 * A077251 A289542 A075622
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2017
STATUS
approved