login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077251
Bisection (even part) of Chebyshev sequence with Diophantine property.
6
1, 12, 119, 1178, 11661, 115432, 1142659, 11311158, 111968921, 1108378052, 10971811599, 108609737938, 1075125567781, 10642645939872, 105351333830939, 1042870692369518, 10323355589864241, 102190685206272892, 1011583496472864679, 10013644279522373898
OFFSET
0,2
COMMENTS
b(n)^2 - 24*a(n)^2 = 25, with the companion sequence b(n) = A077409(n).
The odd part is A077249(n) with Diophantine companion A077250(n).
FORMULA
a(n) = 10*a(n-1)- a(n-2), a(-1)=-2, a(0)=1.
a(n) = S(n, 10)+2*S(n-1, 10), with S(n, x) = U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(n, 10)= A004189(n+1).
a(n) = sqrt((A077409(n)^2 - 25)/24).
G.f.: (1+2*x)/(1-10*x+x^2).
EXAMPLE
24*a(1)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077409(1)^2.
MATHEMATICA
CoefficientList[Series[(2 z + 1)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
PROG
(PARI) Vec((1+2*x)/(1-10*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) a(n)=([0, 1; -1, 10]^n*[1; 12])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015
CROSSREFS
Sequence in context: A025132 A001712 A285232 * A289542 A075622 A153054
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved