login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077249
Bisection (odd part) of Chebyshev sequence with Diophantine property.
6
2, 21, 208, 2059, 20382, 201761, 1997228, 19770519, 195707962, 1937309101, 19177383048, 189836521379, 1879187830742, 18602041786041, 184141230029668, 1822810258510639, 18043961355076722, 178616803292256581, 1768124071567489088, 17502623912382634299
OFFSET
0,1
COMMENTS
-24*a(n)^2 + b(n)^2 = 25, with the companion sequence b(n) = A077250(n).
The even part is A077251(n) with Diophantine companion A077409(n).
FORMULA
a(n) = 10*a(n-1)- a(n-2), a(-1) := -1, a(0)=2.
a(n) = 2*S(n, 10)+S(n-1, 10), with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 10)= A004189(n+1).
G.f.: (2+x)/(1-10*x+x^2).
EXAMPLE
24*a(1)^2 + 25 = 24*21^2+25 = 10609 = 103^2 = A077250(1)^2.
MATHEMATICA
CoefficientList[Series[(z + 2)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{10, -1}, {2, 21}, 40] (* Harvey P. Dale, Apr 08 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, subst(-7*poltchebi(n)+11*poltchebi(n+1), x, 5)/24)
(PARI) a(n)=2*polchebyshev(n, 2, 5)+polchebyshev(n-1, 2, 5) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) Vec((2+x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
CROSSREFS
Sequence in context: A365061 A110253 A185634 * A068070 A085953 A225614
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved