login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077247
Combined Diophantine Chebyshev sequences A077245 and A077243.
1
1, 2, 10, 17, 79, 134, 622, 1055, 4897, 8306, 38554, 65393, 303535, 514838, 2389726, 4053311, 18814273, 31911650, 148124458, 251239889, 1166181391, 1978007462, 9181326670, 15572819807, 72284431969, 122604550994, 569094129082
OFFSET
0,2
COMMENTS
-5*a(n)^2 + 3*b(n)^2 = 7, with the companion sequence b(n)= A077248(n).
In addition to the comment above: 3*b(n)^2 = 5*a(n-2)*a(n+2) + 112, where b(n) = (a(n+2) - a(n-2))/6 = A077248(n), n >= 2. - Klaus Purath, Aug 12 2021
FORMULA
a(2*k)= A077245(k) and a(2*k+1)= A077243(k), k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-8*x^2+x^4).
From Klaus Purath, Aug 12 2021: (Start)
a(n) = 8*a(n-2) - a(n-4), n >= 4.
a(n) = (a(n-2)*a(n-4) - 168)/a(n-6), n >= 6.
a(n) = (a(n-1)*a(n-2) - 15/2 - 9/2*(-1)^n)/a(n-3), n >= 3. (End)
EXAMPLE
5*a(1)^2 + 7 = 5*4 + 7 = 27 = 3*3^2 = 3*A077248(1)^2.
MATHEMATICA
LinearRecurrence[{0, 8, 0, -1}, {1, 2, 10, 17}, 30] (* Harvey P. Dale, Nov 12 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved