login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366508
a(n) = Lucas(2*n) + 2*(-1)^n + 1.
0
2, 10, 17, 50, 122, 325, 842, 2210, 5777, 15130, 39602, 103685, 271442, 710650, 1860497, 4870850, 12752042, 33385285, 87403802, 228826130, 599074577, 1568397610, 4106118242, 10749957125, 28143753122, 73681302250, 192900153617, 505019158610, 1322157322202
OFFSET
1,1
COMMENTS
For n >=3, number of independent vertex sets in the n-double cone graph.
LINKS
Eric Weisstein's World of Mathematics, Double Cone Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
FORMULA
a(n) = 3*a(n-1)-3*a(n-3)+a(n-4).
G.f.: x*(-2-4*x+13*x^2-5*x^3)/((x+1)*(x-1)*(x^2-3*x+1)).
MATHEMATICA
Table[LucasL[2 n] + 2 (-1)^n + 1, {n, 20}]
LinearRecurrence[{3, 0, -3, 1}, {2, 10, 17, 50}, 20]
CoefficientList[Series[(-2 - 4 x + 13 x^2 - 5 x^3)/(-1 + 3 x - 3 x^3 + x^4), {x, 0, 20}], x]
CROSSREFS
Cf. A005248 (bisection of the Lucas numbers).
Sequence in context: A214086 A127492 A258974 * A077247 A341032 A082939
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Oct 11 2023
STATUS
approved