login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366507
Numbers k such that the sum of the digits of k times the square of the sum of the digits cubed of k equals k.
2
1, 4147200, 12743163, 21147075, 39143552, 52921472, 156754936, 205889445, 233935967
OFFSET
1,2
COMMENTS
There are exactly 9 such numbers (Property 13 of Clerc).
LINKS
René-Louis Clerc, Quelques nombres de Niven-Harshad particuliers, pp. 1-17, hal-04235744, 2023.
René-Louis Clerc, Nombres S+P, maxSP, minSP et |P-S|, hal-04507547 [math.nt], 2024. (In French)
EXAMPLE
4147200 = (4+1+4+7+2)*(4^3+1+4^3+7^3+2^3)^2 = 18*230400.
PROG
(PARI) niven12()={for(a=0, 9, for(b=0, 9, for(c=0, 9, for(d=0, 9, for(e=0, 9, for(f=0, 9, for(g=0, 9, for(h=0, 9, for(i=0, 9, for(j=0, 9, if((a+b+c+d+e+f+g+h+i+j)*(a^3+b^3+c^3+d^3+e^3+f^3+g^3+h^3+i^3+j^3)^2==1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j, print1(1000000000*a+100000000*b+10000000*c+1000000*d+100000*e+10000*f+1000*g+100*h+10*i+j, "; "))))))))))))}
(PARI) isok(k) = my(d=digits(k)); vecsum(d)*sum(i=1, #d, d[i]^3)^2 == k; \\ Michel Marcus, Oct 12 2023
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
René-Louis Clerc, Oct 11 2023
STATUS
approved