OFFSET
1,3
COMMENTS
A Ferrers diagram arranges the parts of a partition in left-justified rows of dots, where the numbers of dots in row m corresponds to the m-th part of the partition, with parts in decreasing order.
The slope of a Ferrers diagram is the longest 45-degree line segment joining the rightmost dot in the first row with other dots in the diagram (see example).
If the top row of a diagram for n has A123578(n) dots, the corresponding slope is maximal.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000
Tom M. Apostol, Introduction to Analytic Number Theory, Springer, New York, NY, 1976, pp. 313-315.
Eric Weisstein's World of Mathematics, Ferrers Diagram.
FORMULA
EXAMPLE
The Ferrers diagrams for the partitions of n = 7 into distinct parts are:
.
. (7) (6,1) (5,2) (4,3) (4,2,1)
. o o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o
. o
.
The maximal slope (joining 2 dots) corresponds to the (4,3) partition.
For n = 11 there are two diagrams with maximal slope (joining 2 dots):
.
. o o o o o o o o o o o
. o o o o o o o o o
. o o
.
For n = 26 the maximal slope, corresponding to the partition (7,6,5,4,3,1), joins 5 dots:
.
. o o o o o o o
. /
. o o o o o o
. /
. o o o o o
. /
. o o o o
. /
. o o o
.
. o
.
MATHEMATICA
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Xausa, Oct 11 2023
STATUS
approved