login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366511
a(n) = Lucas(2*n) + 2^(n + 1) + 1.
0
8, 16, 35, 80, 188, 451, 1100, 2720, 6803, 17176, 43700, 111875, 287828, 743416, 1926035, 5001920, 13014188, 33909571, 88452380, 230923280, 603268883, 1576786216, 4122895460, 10783511555, 28210861988, 73815519976, 193168589075, 505556029520, 1323231064028
OFFSET
1,1
COMMENTS
For n >= 3, the number of independent vertex sets in the n-trapezohedron graph.
LINKS
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Trapezohedral Graph
FORMULA
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3) - 2*a(n-4).
G.f.: x*(8-32*x+35*x^2-10*x^3)/((1-x)*(1-2*x)*(1-3*x+x^2)).
MATHEMATICA
Table[LucasL[2 n] + 2^(n + 1) + 1, {n, 20}]
LinearRecurrence[{6, -12, 9, -2}, {8, 16, 35, 80}, 20]
CoefficientList[Series[(8 - 32 x + 35 x^2 - 10 x^3)/(1 - 6 x + 12 x^2 - 9 x^3 + 2 x^4), {x, 0, 20}], x]
CROSSREFS
Cf. A005248 (bisection of the Lucas numbers).
Sequence in context: A072578 A271994 A058516 * A217672 A194601 A200271
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Oct 11 2023
STATUS
approved