login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087061
Array A(n, k) = lunar sum n + k (n >= 0, k >= 0) read by antidiagonals.
42
0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 11, 9, 8, 7, 6, 6, 7, 8, 9, 11, 11, 12, 11, 12, 9, 8, 7, 6, 7, 8, 9, 12, 11, 12, 13, 12, 12, 13, 9, 8
OFFSET
0,4
COMMENTS
There are no carries in lunar arithmetic. For each pair of lunar digits, to Add, take the lArger, but to Multiply, take the sMaller. For example:
169
+ 248
------
269
and
169
x 248
------
168
144
+ 122
--------
12468
Addition and multiplication are associative and commutative and multiplication distributes over addition. E.g., 357 * (169 + 248) = 357 * 269 = 23567 = 13567 + 23457 = (357 * 169) + (357 * 248). Note that 0 + x = x and 9*x = x for all x.
We have changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011.
Brady Haran and N. J. A. Sloane, Primes on the Moon (Lunar Arithmetic), Numberphile video, Nov 2018.
Rémy Sigrist, Colored representation of the array for n, k < 1000 (where the color is function of T(n, k))
FORMULA
T(n, k) = n - k if n - k > k, otherwise k, if seen as a triangle. See A004197, which is a kind of dual. In fact T(n, k) + A004197(n, k) = A003056(n, k). - Peter Luschny, May 07 2023
EXAMPLE
Lunar addition table A(n, k) begins:
[0] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
[1] 1 1 2 3 4 5 6 7 8 9 11 11 12 13 ...
[2] 2 2 2 3 4 5 6 7 8 9 12 12 12 13 ...
[3] 3 3 3 3 4 5 6 7 8 9 13 13 13 13 ...
[4] 4 4 4 4 4 5 6 7 8 9 14 14 14 14 ...
[5] 5 5 5 5 5 5 6 7 8 9 15 15 15 15 ...
[6] 6 6 6 6 6 6 6 7 8 9 16 16 16 16 ...
[7] 7 7 7 7 7 7 7 7 8 9 17 17 17 17 ...
[8] 8 8 8 8 8 8 8 8 8 9 18 18 18 18 ...
[9] 9 9 9 9 9 9 9 9 9 9 19 19 19 19 ...
...
Seen as a triangle T(n, k):
[0] 0;
[1] 1, 1;
[2] 2, 1, 2;
[3] 3, 2, 2, 3;
[4] 4, 3, 2, 3, 4;
[5] 5, 4, 3, 3, 4, 5;
[6] 6, 5, 4, 3, 4, 5, 6;
[7] 7, 6, 5, 4, 4, 5, 6, 7;
[8] 8, 7, 6, 5, 4, 5, 6, 7, 8;
[9] 9, 8, 7, 6, 5, 5, 6, 7, 8, 9;
MAPLE
# Maple programs for lunar arithmetic are in A087062.
# Seen as a triangle:
T := (n, k) -> if n - k > k then n - k else k fi:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 07 2023
MATHEMATICA
ladd[x_, y_] := FromDigits[MapThread[Max, IntegerDigits[#, 10, Max @@ IntegerLength /@ {x, y}] & /@ {x, y}]]; Flatten[Table[ladd[k, n - k], {n, 0, 13}, {k, 0, n}]] (* Davin Park, Sep 29 2016 *)
PROG
(PARI) ladd=A087061(m, n)=fromdigits(vector(if(#(m=digits(m))>#n=digits(n), #n=Vec(n, -#m), #m<#n, #m=Vec(m, -#n), #n), k, max(m[k], n[k]))) \\ M. F. Hasler, Nov 12 2017, updated Nov 15 2018
CROSSREFS
Cf. A087062 (multiplication), A087097 (primes), A004197, A003056.
Sequence in context: A366509 A231205 A003984 * A344838 A344835 A082860
KEYWORD
nonn,tabl,nice,base,look
AUTHOR
Marc LeBrun, Oct 09 2003
EXTENSIONS
Edited by M. F. Hasler, Nov 12 2017
STATUS
approved