login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087062
Array T(n,k) = lunar product n*k (n >= 1, k >= 1) read by antidiagonals.
30
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 10, 2, 3, 4, 5, 5, 4, 3, 2, 10, 11, 10, 3, 4, 5, 6, 5, 4, 3, 10, 11, 11, 11, 10, 4, 5, 6, 6, 5, 4, 10, 11, 11, 11, 12, 11, 10, 5, 6, 7, 6, 5, 10, 11, 12, 11, 11, 12, 12
OFFSET
1,5
COMMENTS
See A087061 for definition. Note that 0+x = x and 9*x = x for all x.
This differs from A003983 at a(46): min(1,10)=1, while lunar product 10*1 = 10.
We have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011.
Brady Haran and N. J. A. Sloane, Primes on the Moon (Lunar Arithmetic), Numberphile video, Nov 2018.
EXAMPLE
Lunar multiplication table begins:
1 1 1 1 1 ...
1 2 2 2 2 ...
1 2 3 3 3 ...
1 2 3 4 4 ...
1 2 3 4 5 ...
MAPLE
# convert decimal to string: rec := proc(n) local t0, t1, e, l; if n <= 0 then RETURN([[0], 1]); fi; t0 := n mod 10; t1 := (n-t0)/10; e := [t0]; l := 1; while t1 <> 0 do t0 := t1 mod 10; t1 := (t1-t0)/10; l := l+1; e := [op(e), t0]; od; RETURN([e, l]); end;
# convert string to decimal: cer := proc(ep) local i, e, l, t1; e := ep[1]; l := ep[2]; t1 := 0; if l <= 0 then RETURN(t1); fi; for i from 1 to l do t1 := t1+10^(i-1)*e[i]; od; RETURN(t1); end;
# lunar addition: dadd := proc(m, n) local i, r1, r2, e1, e2, l1, l2, l, l3, t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := max(l1, l2); l3 := min(l1, l2); t0 := array(1..l); for i from 1 to l3 do t0[i] := max(e1[i], e2[i]); od; if l>l3 then for i from l3+1 to l do if l1>l2 then t0[i] := e1[i]; else t0[i] := e2[i]; fi; od; fi; cer([t0, l]); end;
# lunar multiplication: dmul := proc(m, n) local k, i, j, r1, r2, e1, e2, l1, l2, l, t0; r1 := rec(m); r2 := rec(n); e1 := r1[1]; e2 := r2[1]; l1 := r1[2]; l2 := r2[2]; l := l1+l2-1; t0 := array(1..l); for i from 1 to l do t0[i] := 0; od; for i from 1 to l2 do for j from 1 to l1 do k := min(e2[i], e1[j]); t0[i+j-1] := max(t0[i+j-1], k); od; od; cer([t0, l]); end;
MATHEMATICA
ladd[x_, y_] := FromDigits[MapThread[Max, IntegerDigits[#, 10, Max@IntegerLength[{x, y}]] & /@ {x, y}]];
lmult[x_, y_] := Fold[ladd, 0, Table[10^i, {i, IntegerLength[y] - 1, 0, -1}]*FromDigits /@ Transpose@Partition[Min[##] & @@@ Tuples[IntegerDigits[{x, y}]], IntegerLength[y]]];
Flatten[Table[lmult[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* Davin Park, Oct 06 2016 *)
PROG
(Python)
def lunar_add(n, m):
sn, sm = str(n), str(m)
l = max(len(sn), len(sm))
return int(''.join(max(i, j) for i, j in zip(sn.rjust(l, '0'), sm.rjust(l, '0'))))
def lunar_mul(n, m):
sn, sm, y = str(n), str(m), 0
for i in range(len(sm)):
c = sm[-i-1]
y = lunar_add(y, int(''.join(min(j, c) for j in sn))*10**i)
return y # Chai Wah Wu, Sep 06 2015
(PARI) lmul=A087062(m, n, d(n)=Vecrev(digits(n)))={sum(i=1, #(n=d(n))-1+#m=d(m), vecmax(vector(min(i, #n), j, if(#m>i-j, min(n[j], m[i-j+1]))))*10^i)\10} \\ M. F. Hasler, Nov 13 2017
CROSSREFS
Cf. A087061 (addition), A003983 (min), A087097 (lunar primes).
See A261684 for a version that includes the zero row and column.
Sequence in context: A356300 A348041 A003983 * A204026 A300119 A323211
KEYWORD
nonn,tabl,nice,base,look
AUTHOR
Marc LeBrun, Oct 09 2003
EXTENSIONS
Maple programs from N. J. A. Sloane.
Incorrect comment and Mathematica program removed by David Applegate, Jan 03 2012
Edited by M. F. Hasler, Nov 13 2017
STATUS
approved