The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004197 Table of min(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),... 13
 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0, 0, 1, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS Highest power of 6 that divides A036561. - Fred Daniel Kline, May 29 2012 Triangle T(n,k) read by rows: T(n,k) = min(k,n-k). - Philippe Deléham, Feb 25 2014 LINKS Reinhard Zumkeller, Rows n=0..100 of triangle, flattened FORMULA a(n) = A003983(n) - 1. G.f.: x*y/((1-x)*(1-y)*(1-x*y)). - Franklin T. Adams-Watters, Feb 06 2006 2^T(n,k) = A144464(n,k), 3^T(n,k) = A152714(n,k), 4^T(n,k) = A152716(n,k), 5^T(n,k) = A152717(n,k). - Philippe Deléham, Feb 25 2014 a(n) = (1/2)*(t - 1 - abs(t^2 - 2*n - 1)), where t = floor(sqrt(2*n+1)+1/2). - Ridouane Oudra, May 03 2019 EXAMPLE From Philippe Deléham, Feb 25 2014: (Start) Top left corner of table:   0 0 0 0   0 1 1 1   0 1 2 2   0 1 2 3 Triangle T(n,k) begins:   0;   0, 0;   0, 1, 0;   0, 1, 1, 0;   0, 1, 2, 1, 0;   0, 1, 2, 2, 1, 0;   0, 1, 2, 3, 2, 1, 0;   0, 1, 2, 3, 3, 2, 1, 0;   0, 1, 2, 3, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0;   0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0;   ... (End) MATHEMATICA Flatten[Table[IntegerExponent[2^(n - k) 3^k, 6], {n, 0, 20}, {k, 0, n}]] (* Fred Daniel Kline, May 29 2012 *) PROG (Haskell) a004197 n k = a004197_tabl !! n !! k a004197_tabl = map a004197_row [0..] a004197_row n = hs ++ drop (1 - n `mod` 2) (reverse hs)    where hs = [0..n `div` 2] -- Reinhard Zumkeller, Aug 14 2011 (PARI) T(x, y)=min(x, y) \\ Charles R Greathouse IV, Feb 07 2017 CROSSREFS Cf. A144464, A152714, A152716, A152717. Similar to but strictly different from A087062 and A261684. Row sums give A002620. - Reinhard Zumkeller, Jul 27 2005 Positions of zero are given in A117142. - Ridouane Oudra, Apr 30 2019 Sequence in context: A324734 A111143 A342955 * A261684 A048571 A025880 Adjacent sequences:  A004194 A004195 A004196 * A004198 A004199 A004200 KEYWORD tabl,nonn,easy,nice AUTHOR EXTENSIONS Mathematica program fixed by Harvey P. Dale, Nov 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 20:11 EDT 2022. Contains 355058 sequences. (Running on oeis4.)