login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049581
Table T(n,k) = |n-k| read by antidiagonals (n >= 0, k >= 0).
24
0, 1, 1, 2, 0, 2, 3, 1, 1, 3, 4, 2, 0, 2, 4, 5, 3, 1, 1, 3, 5, 6, 4, 2, 0, 2, 4, 6, 7, 5, 3, 1, 1, 3, 5, 7, 8, 6, 4, 2, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 12
OFFSET
0,4
COMMENTS
Commutative non-associative operator with identity 0. T(nx,kx) = x T(n,k). A multiplicative analog is A089913. - Marc LeBrun, Nov 14 2003
For the characteristic polynomial of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A203993. - Wolfdieter Lang, Feb 04 2018
For the determinant of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A085750. - Bernard Schott, May 13 2020
a(n) = 0 iff n = 4 times triangular number (A046092). - Bernard Schott, May 13 2020
FORMULA
G.f.: (x + y - 4xy + x^2y + xy^2)/((1-x)^2 (1-y)^2) (1-xy)) = (x/(1-x)^2 + y/(1-y)^2)/(1-xy). T(n,0) = T(0,n) = n; T(n+1,k+1) = T(n,k). - Franklin T. Adams-Watters, Feb 06 2006
a(n) = |A002260(n+1)-A004736(n+1)| or a(n) = |((n+1)-t(t+1)/2) - (t*t+3*t+4)/2-(n+1))| where t=floor[(-1+sqrt(8*(n+1)-7))/2]. - Boris Putievskiy, Dec 24 2012; corrected by Altug Alkan, Sep 30 2015
From Robert Israel, Sep 30 2015: (Start)
If b(n) = a(n+1) - 2*a(n) + a(n-1), then for n >= 3 we have
b(n) = -1 if n = (j^2+5j+4)/2 for some integer j >= 1
b(n) = -3 if n = (j^2+5j+6)/2 for some integer j >= 0
b(n) = 4 if n = 2j^2 + 6j + 4 for some integer j >= 0
b(n) = 2 if n = 2j^2 + 8j + 7 or 2j^2 + 8j + 8 for some integer j >= 0
b(n) = 0 otherwise. (End)
Triangle t(n,k) = max(k, n-k) - min(k, n-k). - Peter Luschny, Jan 26 2018
Triangle t(n, k) = |n - 2*k| for n >= 0, k = 0..n. See the Maple and Mathematica programs. Hence t(n, k)= t(n, n-k). - Wolfdieter Lang, Feb 04 2018
a(n) = |t^2 - 2*n - 1|, where t = floor(sqrt(2*n+1) + 1/2). - Ridouane Oudra, Jun 07 2019; Dec 11 2020
As a rectangle, T(n,k) = |n-k| = max(n,k) - min(n,k). - Clark Kimberling, May 11 2020
EXAMPLE
Displayed as a triangle t(n, k):
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 1
2: 2 0 2
3: 3 1 1 3
4: 4 2 0 2 4
5: 5 3 1 1 3 5
6: 6 4 2 0 2 4 6
7: 7 5 3 1 1 3 5 7
8: 8 6 4 2 0 2 4 6 8
9: 9 7 5 3 1 1 3 5 7 9
10: 10 8 6 4 2 0 2 4 6 8 10
... reformatted by Wolfdieter Lang, Feb 04 2018
Displayed as a table:
0 1 2 3 4 5 6 ...
1 0 1 2 3 4 5 ...
2 1 0 1 2 3 4 ...
3 2 1 0 1 2 3 ...
4 3 2 1 0 1 2 ...
5 4 3 2 1 0 1 ...
6 5 4 3 2 1 0 ...
...
MAPLE
seq(seq(abs(n-2*k), k=0..n), n=0..12); # Robert Israel, Sep 30 2015
MATHEMATICA
Table[Abs[(n-k) -k], {n, 0, 12}, {k, 0, n}]//Flatten (* Michael De Vlieger, Sep 29 2015 *)
Table[Join[Range[n, 0, -2], Range[If[EvenQ[n], 2, 1], n, 2]], {n, 0, 12}]//Flatten (* Harvey P. Dale, Sep 18 2023 *)
PROG
(PARI) a(n) = abs(2*(n+1)-binomial((sqrtint(8*(n+1))+1)\2, 2)-(binomial(1+floor(1/2 + sqrt(2*(n+1))), 2))-1);
vector(100, n , a(n-1)) \\ Altug Alkan, Sep 29 2015
(PARI) {t(n, k) = abs(n-2*k)}; \\ G. C. Greubel, Jun 07 2019
(GAP) a := Flat(List([0..12], n->List([0..n], k->Maximum(k, n-k)-Minimum(k, n-k)))); # Muniru A Asiru, Jan 26 2018
(Magma) [[Abs(n-2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 07 2019
(Sage) [[abs(n-2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 07 2019
(Python)
from math import isqrt
def A049581(n): return abs((k:=n+1<<1)-((m:=isqrt(k))+(k>m*(m+1)))**2-1) # Chai Wah Wu, Nov 09 2024
CROSSREFS
Cf. A089913. Apart from signs, same as A114327. A203993.
Sequence in context: A194547 A257570 A220417 * A114327 A330240 A330237
KEYWORD
nonn,tabl,easy,nice
STATUS
approved