The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085750 Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n. 18
 0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The determinant of the distance matrix of a tree with vertex set {1,2,...,n}. The distance matrix is the n X n matrix in which the (i,j)-term is the number of edges in the unique path from vertex i to vertex j. [The matrix A in the definition is the distance matrix of the path-tree 1-2-...-n.] Hankel transform of A100071. Also Hankel transform of C(2n-2,n-1)(-1)^(n-1). Inverse binomial transform of -n. - Paul Barry, Jan 11 2007 Pisano period lengths: 1, 1, 3, 1, 20, 3, 42, 1, 9, 20, 55, 3,156, 42, 60, 1,136, 9,171, 20, ... - R. J. Mathar, Aug 10 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J., 50, 1971, 2495-2519. Tanya Khovanova, Recursive Sequences R. Merris, The distance spectrum of a tree, J. Graph Theory, 14, No. 3, 1990,365-369. Index entries for linear recurrences with constant coefficients, signature (-4,-4). FORMULA a(n) = (-1)^(n+1) * (n-1) * 2^(n-2) = (-1)^(n+1) * A001787(n-1). G.f.: -x/(1+2x)^2. - Paul Barry, Jan 11 2007 a(n) = -4*a(n-1) - 4*a(n-2); a(1) = 0, a(1) = -1. - Philippe Deléham, Nov 03 2008 E.g.f.: -x*exp(-2*x). - Stefano Spezia, Sep 30 2022 MAPLE seq((-1)^(n-1)*(n-1)*2^(n-2), n = 1 .. 31); MATHEMATICA Table[-(-1)^n*2^(n - 2)*(n - 1), {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) LinearRecurrence[{-4, -4}, {0, -1}, 40] (* Harvey P. Dale, Apr 14 2014 *) CoefficientList[Series[-x/(1 + 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 15 2014 *) PROG (PARI) a(n) = (-1)^n*(1-n)<<(n-2) \\ Charles R Greathouse IV, Sep 30 2022 CROSSREFS Essentially the same as A001787. Cf. A085807, A100071, A203993, A204249, A278845, A278847. Sequence in context: A260186 A097067 A139756 * A001787 A118442 A038592 Adjacent sequences: A085747 A085748 A085749 * A085751 A085752 A085753 KEYWORD easy,sign AUTHOR Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 21 2003 EXTENSIONS More terms from Philippe Deléham, Nov 16 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)