login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204249
Permanent of the n-th principal submatrix of A003057.
18
1, 2, 17, 336, 12052, 685080, 56658660, 6428352000, 958532774976, 181800011433600, 42745508545320000, 12203347213269273600, 4158410247782904833280, 1667267950805177583582720, 776990110000329481864608000, 416483579190482716042690560000
OFFSET
0,2
COMMENTS
I have proved that for any odd prime p we have a(p) == p (mod p^2). - Zhi-Wei Sun, Aug 30, 2021
LINKS
Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
FORMULA
From Vaclav Kotesovec, Dec 01 2016: (Start)
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826...
a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451...
(End)
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))):
seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
MATHEMATICA
f[i_, j_] := i + j;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A003057 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *)
PROG
(PARI) {a(n) = matpermanent(matrix(n, n, i, j, i+j))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 14 2012
EXTENSIONS
a(0)=1 prepended and one more term added by Alois P. Heinz, Nov 14 2016
STATUS
approved