The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204246 Array given by f(i,1)=1, f(1,j)=1, f(i,i)=(i-1)!, and f(i,j)=0 otherwise, read by antidiagonals. 2
 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 6, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 24, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 120, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,13 LINKS EXAMPLE Northwest corner: 1 1 1 1 1 1 1 0 0 0 1 0 2 0 0 1 0 0 6 0 1 0 0 0 14 MAPLE A204246 := proc(n, m)         if n=1 or m =1 then                 1;         elif n = m then                 (n-1)! ;         else                 0;         end if; end proc: seq(seq(A204246(d-m, m), m=1..d-1), d=2..15) ; # R. J. Mathar, Jan 21 2012 MATHEMATICA f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := (i - 1)!; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i],   {n, 1, 12}, {i, 1, n}]]      (* A204246 *) Table[Det[m[n]], {n, 1, 15}]  (* A204247 *) Permanent[m_] :=   With[{a = Array[x, Length[m]]},    Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 14}]  (* A203227 *) CROSSREFS Cf. A204247, A203227. Sequence in context: A158924 A025426 A269244 * A053200 A050870 A103306 Adjacent sequences:  A204243 A204244 A204245 * A204247 A204248 A204249 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Jan 13 2012 EXTENSIONS Terms corrected by R. J. Mathar, Jan 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:00 EDT 2021. Contains 347478 sequences. (Running on oeis4.)