login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204246
Array given by f(i,1)=1, f(1,j)=1, f(i,i)=(i-1)!, and f(i,j)=0 otherwise, read by antidiagonals.
2
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 6, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 24, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 120, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,13
EXAMPLE
Northwest corner:
1 1 1 1 1
1 1 0 0 0
1 0 2 0 0
1 0 0 6 0
1 0 0 0 14
MAPLE
A204246 := proc(n, m)
if n=1 or m =1 then
1;
elif n = m then
(n-1)! ;
else
0;
end if;
end proc:
seq(seq(A204246(d-m, m), m=1..d-1), d=2..15) ; # R. J. Mathar, Jan 21 2012
MATHEMATICA
f[i_, j_] := 0; f[1, j_] := 1;
f[i_, 1] := 1; f[i_, i_] := (i - 1)!;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204246 *)
Table[Det[m[n]], {n, 1, 15}] (* A204247 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 14}] (* A203227 *)
CROSSREFS
Sequence in context: A158924 A025426 A269244 * A053200 A050870 A103306
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jan 13 2012
EXTENSIONS
Terms corrected by R. J. Mathar, Jan 21 2012
STATUS
approved