login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103306
Triangle read by rows: T(n,k) = number of k-subsets of the n-th roots of 1 that add to zero (0 <= k <= n).
5
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 0, 5, 0, 10, 2, 10, 0, 5, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 6, 4, 15, 12, 24, 12, 15, 4, 6, 0, 1, 1, 0, 0, 0, 0
OFFSET
0,13
COMMENTS
Observe that T(n,k) = binomial(n,k) (mod n). Because the sum of the n n-th roots of unity is 0 for n>1, each row is symmetric for n>1. Hence only k=0..floor(n/2) need to be computed. - T. D. Noe, Jan 16 2008
LINKS
Wouter Meeussen and T. D. Noe, Rows n=0..43 of triangle, flattened
Wouter Meeussen, More terms
Gary Sivek, On vanishing sums of distinct roots of unity, #A31, Integers 10 (2010), 365-368.
EXAMPLE
Triangle begins:
{1},
{1, 0},
{1, 0, 1},
{1, 0, 0, 1},
{1, 0, 2, 0, 1},
{1, 0, 0, 0, 0, 1},
{1, 0, 3, 2, 3, 0, 1},
{1, 0, 0, 0, 0, 0, 0, 1},
{1, 0, 4, 0, 6, 0, 4, 0, 1},
{1, 0, 0, 3, 0, 0, 3, 0, 0, 1},
T(10,4)=10, counting {1,2,6,7}, {1,3,6,8}, {1,4,6,9}, {1,5,6,10}, {2,3,7,8}, {2,4,7,9}, {2,5,7,10}, {3,4,8,9}, {3,5,8,10}, {4,5,9,10}.
MATHEMATICA
<<DiscreteMath`Combinatorica`; Table[Count[(KSubsets[Range[n], k]), q_List/; Chop[Plus@@(E^(2.*Pi*I*q/n))]===0], {n, 0, 24}, {k, 0, n}]
T[n_, k_] := T[n, k] = Piecewise[{{T[n, n-k], k > n/2 >= 1}}, Count[Subsets[Range[n], {k}], subset_/; PossibleZeroQ[ExpToTrig[Sum[Exp[2*Pi*I*m/n], {m, subset}]]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // TableForm (* David M. Zimmerman, Sep 23 2020 *)
CROSSREFS
Row sums give A103314.
Sequence in context: A204246 A053200 A050870 * A269249 A182423 A163510
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 11 2005
STATUS
approved