login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050870
T(h,k) = binomial(h,k) - A050186(h,k).
4
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 2, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 0, 0, 3, 0, 0, 3, 0, 0, 1, 1, 0, 5, 0, 10, 2, 10, 0, 5, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 6, 4, 15, 0, 24, 0, 15, 4, 6, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 7, 0, 21, 0, 35, 2, 35, 0, 21, 0, 7, 0, 1, 1, 0
OFFSET
0,13
COMMENTS
T(h,k) = number of periodic binary words of k 1's and h-k 0's.
EXAMPLE
0;
0,0;
1,0,1;
1,0,0,1;
1,0,2,0,1;
1,0,0,0,0,1;
1,0,3,2,3,0,1;
1,0,0,0,0,0,0,1;
1,0,4,0,6,0,4,0,1;
1,0,0,3,0,0,3,0,0,1;
1,0,5,0,10,2,10,0,5,0,1;
MAPLE
A050186 := proc(n, k)
if n = 0 then
1;
else
add (numtheory[mobius](d)*binomial(n/d, k/d), d =numtheory[divisors](igcd(n, k))) ;
end if;
end proc:
A050870 := proc(n, k)
binomial(n, k)-A050186(n, k) ;
end proc:
seq(seq(A050870(n, k), k=0..n), n=0..20) ; # R. J. Mathar, Sep 24 2011
MATHEMATICA
T[n_, k_] := Binomial[n, k] - If[n == 0, 1, Sum[MoebiusMu[d] Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* Jean-François Alcover, Jul 01 2019 *)
CROSSREFS
Cf. A007318. Different from A053200.
Sequence in context: A269244 A204246 A053200 * A103306 A269249 A182423
KEYWORD
nonn,tabl
EXTENSIONS
Edited by N. J. A. Sloane, Aug 29 2008
STATUS
approved