login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A269244
Number of times the digit 4 appears in the decimal expansion of n^3.
12
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1
OFFSET
0,15
COMMENTS
The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036531, i.e., A036531(n)^(1/3) = A048369(n) is the index of the first occurrence of n.
EXAMPLE
0^3 = 0, 1^3 = 1, 2^3 = 8 and 3^3 = 27 all have a(0) = a(1) = a(2) = a(3) = 0 digits '4'.
4^3 = 64 has a(4) = 1 digit '4'.
14^3 = 2744 has a(14) = 2 digits '4'.
MATHEMATICA
Table[DigitCount[n^3, 10, 4], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
PROG
(PARI) A269244(n)=#select(t->t==4, digits(n^3))
CROSSREFS
Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086012 (digit 4), and A086008 - A086017 for digits 0 - 9.
Sequence in context: A231366 A158924 A025426 * A204246 A053200 A050870
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Feb 20 2016
STATUS
approved