login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269246
Number of times the digit 6 appears in the decimal expansion of n^3.
12
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 3, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0
OFFSET
0,37
COMMENTS
The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036533, i.e., A036533(n)^(1/3) = A048371(n) is the index of the first occurrence of n.
EXAMPLE
0^3 = 0, 1^3 = 1, 2^3 = 8 and 3^3 = 27 all have a(0) = a(1) = a(2) = a(3) = 0 digits '6'.
4^3 = 64 has a(4) = 1 digit '6'.
MATHEMATICA
Table[DigitCount[n^3, 10, 6], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
PROG
(PARI) A269246(n)=#select(t->t==6, digits(n^3))
CROSSREFS
Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086014 (digit 6), and A086008 - A086017 for digits 0 - 9.
Sequence in context: A336567 A361902 A205531 * A334566 A342270 A330248
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Feb 20 2016
STATUS
approved