login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269242
Number of times the digit 2 appears in the decimal expansion of n^3.
12
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,29
COMMENTS
The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036529, i.e., A036529(n)^(1/3) = A048367(n) is the index of the first occurrence of n.
LINKS
EXAMPLE
0^3 = 0 has a(0) = 0 digits '2'.
1^3 = 1 has a(1) = 0 digits '2'.
2^3 = 8 has a(2) = 0 digits '2'.
3^3 = 27 has a(3) = 1 digits '2'.
4^3 = 64 has a(4) = 0 digits '2'.
5^3 = 125 has a(5) = 1 digit '2'.
28^3 = 21952 is the least cube which has a(28) = 2 digits '2'.
MAPLE
seq(numboccur(2, convert(n^3, base, 10)), n=0..100); # Robert Israel, Jan 26 2020
MATHEMATICA
Table[DigitCount[n^3, 10, 2], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
PROG
(PARI) A269242(n)=#select(t->t==2, digits(n^3))
(Magma) [Multiplicity(Intseq(n^3), 2): n in [0..100]]; // Marius A. Burtea, Jan 26 2020
CROSSREFS
Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086010 (digit 2), and A086008 - A086017 for digits 0 - 9.
Sequence in context: A167230 A093658 A096493 * A321759 A076882 A229745
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Feb 20 2016
STATUS
approved