OFFSET
1,15
COMMENTS
Inspired by the 135th and 136th problems of Project Euler (see links).
If d is the common difference of the arithmetic progression (x, y, z), then the Diophantine equation becomes (y+d)^2 - y^2 - (y-d)^2 = n <==> y^2 - 4dy + n = 0 <==> n = y * (4d-y).
If y is the average term, then y divides n.
Offset is 1 because for n = 0, every (x, y, z)= (3d, 4d, 5d) with d>0 would be solution.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Project Euler, Problem 135: Same differences
Project Euler, Problem 136: Singleton difference
FORMULA
EXAMPLE
a(3) = 1 because 4^2 - 3^2 - 2^2 = 3.
a(15) = 3 because 5^2 - 3^2 - 1^2 = 7^2 - 5^2 - 3^2 = 19^2 - 15^2 - 11^2 = 15.
If n = 4q+3, q >= 0 then (3q+2, 4q+3, 5q+4) is a solution.
If n = 16q, q >= 1 then (3q-1, 4q, 5q+1) is a solution.
If n = 16q+4, q >= 0 then (6q+1, 8q+2, 10q+3) is a solution.
If n = 16q+12, q >= 0 then (6q+4, 8q+6, 10q+8) is a solution.
MAPLE
f:= proc(n) local r; r:= floor(sqrt(n/3));
nops(select(t -> n/t + t mod 4 = 0 and t > r, numtheory:-divisors(n)))
end proc:
map(f, [$1..100]); # Robert Israel, Jul 31 2020
MATHEMATICA
a[n_] := Length@ Solve[(4 d - x) x == n && x>0 && x-d>0 && x+d>0, {d, x}, Integers]; Array[a, 90] (* Giovanni Resta, May 06 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, May 06 2020
EXTENSIONS
More terms from Giovanni Resta, May 06 2020
STATUS
approved