OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018
REFERENCES
Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999
LINKS
Mihaly Bencze, Problem 11508, The American Mathematical Monthly, Vol. 117, N° 5, May 2010, p. 459.
Milan Janjić, Two Enumerative Functions. [Wayback Machine link]
Tanya Khovanova, Recursive Sequences.
William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
William A. Stein, The modular forms database.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)
MAPLE
MATHEMATICA
Range[8, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
Table[16n+8, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 01 2014 *)
LinearRecurrence[{2, -1}, {8, 24}, 60] (* or *) NestList[#+16&, 8, 60] (* Harvey P. Dale, Aug 18 2019 *)
PROG
(Magma) [16*n+8: n in [0..50]]; // Wesley Ivan Hurt, Jun 01 2014
(PARI) a(n)=16*n+8 \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Gary W. Adamson, Dec 11 1999
STATUS
approved