OFFSET
1,1
COMMENTS
Also primes p such that p divides 2^((p-1)/2) + 1. - Cino Hilliard, Sep 04 2004
Primes p such that p^2 == 25 (mod 48), n > 1. - Gary Detlefs, Dec 29 2011
This sequence gives the primes p which satisfy C(p, x = 0) = -1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For a proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Except for the initial 3, these are the primes p such that Fibonacci(p) mod 6 = 5. - Gary Detlefs, May 26 2014
Inert rational primes in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017
If a prime p is congruent to 3 or 5 (mod 8) and r > 1, then 2^((p-1)*p^(r-1)/2) == -1 (mod p^r). - Marina Ibrishimova, Sep 29 2018
For the proofs or the comments by Cino Hilliard and Marina Ibrishimova, see link below. - Robert Israel, Apr 24 2019
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
MAPLE
for n from 2 to 563 do if(ithprime(n)^2 mod 48 = 25) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
MATHEMATICA
Select[Prime @ Range[2, 105], JacobiSymbol[2, # ] == -1 &] (* Robert G. Wilson v, Dec 15 2005 *)
Select[Union[8Range[100] - 5, 8Range[100] - 3], PrimeQ[#] &] (* Alonso del Arte, May 22 2016 *)
Select[Prime[Range[150]], MemberQ[{3, 5}, Mod[#, 8]]&] (* Harvey P. Dale, Mar 02 2022 *)
PROG
(PARI) is(n)=isprime(n) && (n%8==3 || n%8==5) \\ Charles R Greathouse IV, Mar 21 2016
(Magma) [3] cat [p: p in PrimesUpTo (600) | p^2 mod 48 eq 25]; // Vincenzo Librandi, May 23 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved