OFFSET
1,1
COMMENTS
Since primes above the n-th row are <2^n, primes in the n-th row are >2^(n+1)-2^n=2^n. Thus in different rows primes are different.
Questions: 1) Is every row nonempty? 2) Is the sequence infinite (an infinite number of nonempty rows)?
LINKS
Jason Kimberley, Table of n, a(n) for n = 1..1016
EXAMPLE
1: 3;
2: 5;
3: 11, 13;
4: 19, 29;
5: 53, 59, 61;
6: 67, 109;
7: 197, 227, 251;
8: 499, 509;
9: 773, 797, 827, 971, 1013, 1019, 1021;
PROG
(Magma)
A152871and2 :=
function(N)
A := [[3]]; C := [1];
for n in [2..N] do
C[n] := 0;
A[n] := [];
for a in Reverse(&cat A) do
d := 2^(n+1) - a;
if
IsPrime(d)
then
Append(~A[n], d);
C[n] +:= 1;
end if;
end for;
end for;
return A, C;
end function;
A152871and2(20);
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Vladimir Shevelev, Dec 14 2008
EXTENSIONS
Heavily edited by Jason Kimberley, Feb 12 2013
STATUS
approved