login
A152871
Irregular table with first row containing the single term 3; in the n-th row, n>=2, we list in increasing order those d=2^(n+1)-a, for each term a in all the preceding rows, such that d is prime.
2
3, 5, 11, 13, 19, 29, 53, 59, 61, 67, 109, 197, 227, 251, 499, 509, 773, 797, 827, 971, 1013, 1019, 1021, 1549, 1987, 2029, 3083, 3299, 3323, 4091, 4093, 4099, 6163, 8179, 15413, 16187, 16381, 28669, 30781, 31219, 32707, 32749, 50123, 62213, 64709, 64763
OFFSET
1,1
COMMENTS
Since primes above the n-th row are <2^n, primes in the n-th row are >2^(n+1)-2^n=2^n. Thus in different rows primes are different.
Questions: 1) Is every row nonempty? 2) Is the sequence infinite (an infinite number of nonempty rows)?
LINKS
EXAMPLE
1: 3;
2: 5;
3: 11, 13;
4: 19, 29;
5: 53, 59, 61;
6: 67, 109;
7: 197, 227, 251;
8: 499, 509;
9: 773, 797, 827, 971, 1013, 1019, 1021;
PROG
(Magma)
A152871and2 :=
function(N)
A := [[3]]; C := [1];
for n in [2..N] do
C[n] := 0;
A[n] := [];
for a in Reverse(&cat A) do
d := 2^(n+1) - a;
if
IsPrime(d)
then
Append(~A[n], d);
C[n] +:= 1;
end if;
end for;
end for;
return A, C;
end function;
A152871and2(20);
CROSSREFS
The n-th row has length A152872(n).
Cf. A152451.
Sequence in context: A003629 A175865 A001122 * A329760 A156221 A207325
KEYWORD
nonn,easy,tabf
AUTHOR
Vladimir Shevelev, Dec 14 2008
EXTENSIONS
Heavily edited by Jason Kimberley, Feb 12 2013
STATUS
approved