The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152873 Number of permutations of {1,2,...,n} (n>=2) having a single run of even entries. For example, the permutation 513284679 has a single run of even entries: 2846. 1
 2, 6, 12, 48, 144, 720, 2880, 17280, 86400, 604800, 3628800, 29030400, 203212800, 1828915200, 14631321600, 146313216000, 1316818944000, 14485008384000, 144850083840000, 1738201006080000, 19120211066880000, 248562743869440000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS a(n) = A152667(n,1). LINKS FORMULA a(2n) = (n+1)(n!)^2; a(2n+1) = n!(n+2)! E.g.f.: 24 sqrt(4-x^2)*arcsin(x/2)/[(2-x)^3*(2+x)^2] - x(6-8x-3x^2+2x^3)/ [(2+x)(2-x)^2]. G.f.: G(0)/x^2 -1/x^2 -2/x, where G(k) = 1 + x*(k+2)/(1 - x*(k+1)/ (x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013 EXAMPLE a(4) = 12 because we have 2413, 2431, 4213, 4231, 1243, 1423 and their reverses. MAPLE ae := proc (n) options operator, arrow: factorial(n)^2*(n+1) end proc: ao := proc (n) options operator, arrow: factorial(n)*factorial(n+2) end proc: a := proc (n) if `mod`(n, 2) = 0 then ae((1/2)*n) else ao((1/2)*n-1/2) end if end proc; seq(a(n), n = 2 .. 23); CROSSREFS Cf. A152667. Sequence in context: A169858 A292132 A208147 * A175810 A083001 A285079 Adjacent sequences:  A152870 A152871 A152872 * A152874 A152875 A152876 KEYWORD nonn AUTHOR Emeric Deutsch, Dec 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 04:54 EDT 2021. Contains 343961 sequences. (Running on oeis4.)