login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152873
Number of permutations of {1,2,...,n} (n>=2) having a single run of even entries. For example, the permutation 513284679 has a single run of even entries: 2846.
1
2, 6, 12, 48, 144, 720, 2880, 17280, 86400, 604800, 3628800, 29030400, 203212800, 1828915200, 14631321600, 146313216000, 1316818944000, 14485008384000, 144850083840000, 1738201006080000, 19120211066880000, 248562743869440000, 2982752926433280000, 41758540970065920000
OFFSET
2,1
FORMULA
a(n) = A152667(n,1).
a(2n) = (n+1)(n!)^2;
a(2n+1) = n!(n+2)!
E.g.f.: 24*sqrt(4-x^2)*arcsin(x/2)/[(2-x)^3*(2+x)^2] - x(6-8x-3x^2+2x^3)/ [(2+x)(2-x)^2].
G.f.: G(0)/x^2 -1/x^2 -2/x, where G(k) = 1 + x*(k+2)/(1 - x*(k+1)/ (x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
D-finite with recurrence 4*a(n) -2*a(n-1) -(n+2)*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 24 2022
Sum_{n>=2} 1/a(n) = BesselI(1, 2) + BesselI(2, 2) - 3/2 = A096789 + A229020 - 3/2. - Amiram Eldar, Jan 22 2023
EXAMPLE
a(4) = 12 because we have 2413, 2431, 4213, 4231, 1243, 1423 and their reverses.
MAPLE
ae := proc (n) options operator, arrow: factorial(n)^2*(n+1) end proc: ao := proc (n) options operator, arrow: factorial(n)*factorial(n+2) end proc: a := proc (n) if `mod`(n, 2) = 0 then ae((1/2)*n) else ao((1/2)*n-1/2) end if end proc; seq(a(n), n = 2 .. 23);
# second Maple program:
a:= n-> (h-> h!*(h+1+(n mod 2))!)(iquo(n, 2)):
seq(a(n), n=2..25); # Alois P. Heinz, Sep 24 2024
MATHEMATICA
a[n_] := If[OddQ[n], ((n - 1)/2)!*((n + 3)/2)!, (n/2 + 1) ((n/2)!)^2]; Array[a, 25, 2] (* Amiram Eldar, Jan 22 2023 *)
CROSSREFS
Cf. A152667.
Sequence in context: A292132 A208147 A369330 * A175810 A083001 A285079
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 14 2008
STATUS
approved