login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152873 Number of permutations of {1,2,...,n} (n>=2) having a single run of even entries. For example, the permutation 513284679 has a single run of even entries: 2846. 1
2, 6, 12, 48, 144, 720, 2880, 17280, 86400, 604800, 3628800, 29030400, 203212800, 1828915200, 14631321600, 146313216000, 1316818944000, 14485008384000, 144850083840000, 1738201006080000, 19120211066880000, 248562743869440000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

a(n) = A152667(n,1).

LINKS

Table of n, a(n) for n=2..23.

FORMULA

a(2n) = (n+1)(n!)^2;

a(2n+1) = n!(n+2)!

E.g.f.: 24 sqrt(4-x^2)*arcsin(x/2)/[(2-x)^3*(2+x)^2] - x(6-8x-3x^2+2x^3)/ [(2+x)(2-x)^2].

G.f.: G(0)/x^2 -1/x^2 -2/x, where G(k) = 1 + x*(k+2)/(1 - x*(k+1)/ (x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013

EXAMPLE

a(4) = 12 because we have 2413, 2431, 4213, 4231, 1243, 1423 and their reverses.

MAPLE

ae := proc (n) options operator, arrow: factorial(n)^2*(n+1) end proc: ao := proc (n) options operator, arrow: factorial(n)*factorial(n+2) end proc: a := proc (n) if `mod`(n, 2) = 0 then ae((1/2)*n) else ao((1/2)*n-1/2) end if end proc; seq(a(n), n = 2 .. 23);

CROSSREFS

Cf. A152667.

Sequence in context: A169858 A292132 A208147 * A175810 A083001 A285079

Adjacent sequences:  A152870 A152871 A152872 * A152874 A152875 A152876

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Dec 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 18:29 EST 2019. Contains 329149 sequences. (Running on oeis4.)